cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A139274 a(n) = n*(8*n-1).

Original entry on oeis.org

0, 7, 30, 69, 124, 195, 282, 385, 504, 639, 790, 957, 1140, 1339, 1554, 1785, 2032, 2295, 2574, 2869, 3180, 3507, 3850, 4209, 4584, 4975, 5382, 5805, 6244, 6699, 7170, 7657, 8160, 8679, 9214, 9765, 10332, 10915, 11514, 12129, 12760, 13407, 14070, 14749
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the triangular numbers A000217.
Polygonal number connection: 2*P_n + 5*S_n where P_n is the n-th pentagonal number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010

Examples

			a(1) = 16*1 + 0 - 9 = 7; a(2) = 16*2 + 7 - 9 = 30; a(3) = 16*3 + 30 - 9 = 69. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = (1/3) * Sum_{i=n..(7*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(9*x+7)/(1-x)^3.
E.g.f.: (8*x^2 + 7*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 4*log(2) + sqrt(2)*log(sqrt(2)+1) - (sqrt(2)+1)*Pi/2. - Amiram Eldar, Mar 18 2022

A134708 Even superperfect numbers divided by 2.

Original entry on oeis.org

1, 2, 8, 32, 2048, 32768, 131072, 536870912, 576460752303423488, 154742504910672534362390528, 40564819207303340847894502572032, 42535295865117307932921825928971026432
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2007, Apr 23 2008

Keywords

Comments

a(13) and a(14) have 157 and 183 digits respectively. - R. J. Mathar, Jan 07 2008
Largest proper divisor of n-th even superperfect number A061652(n). Also, largest proper divisor of n-th superperfect number A019279(n), if there are no odd superperfect numbers.
Indices of even hexagonal numbers (A014635) that are also even perfect numbers. - Omar E. Pol, Jan 11 2009

Examples

			a(5) = 2048 because the 5th even superperfect number is 4096 and 4096/2 = 2048.
		

Crossrefs

Programs

  • Maple
    A000043 := proc(n) op(n,[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213]) ; end: A061652 := proc(n) 2^(A000043(n)-1) ; end: A134708 := proc(n) A061652(n)/2 ; end: seq(A134708(n),n=1..14) ; # R. J. Mathar, Jan 07 2008
  • Mathematica
    With[{max = 12}, 2^(MersennePrimeExponent[Range[max]] - 2)] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = A061652(n)/2.
a(n) = 2^(A000043(n)-2). - Omar E. Pol, Mar 01 2008
a(n) = A032742(A061652(n)). Also, a(n) = A032742(A019279(n)), if there are no odd superperfect numbers.
a(n) = Sum_{x=1..n-th superperfect number} x*(-1)^x. - Juri-Stepan Gerasimov, Jul 21 2009

Extensions

More terms from R. J. Mathar, Jan 07 2008

A139276 a(n) = n*(8*n+3).

Original entry on oeis.org

0, 11, 38, 81, 140, 215, 306, 413, 536, 675, 830, 1001, 1188, 1391, 1610, 1845, 2096, 2363, 2646, 2945, 3260, 3591, 3938, 4301, 4680, 5075, 5486, 5913, 6356, 6815, 7290, 7781, 8288, 8811, 9350, 9905, 10476, 11063, 11666, 12285, 12920
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11,..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139272 in the same spiral.

Examples

			a(1)=16*1+0-5=11; a(2)=16*2+11-5=38; a(3)=16*3+38-5=81. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 3*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-5 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(5*x + 11)/(1-x)^3.
E.g.f.: (8*x^2 + 11*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/9 - (sqrt(2)-1)*Pi/6 - 4*log(2)/3 + sqrt(2)*log(sqrt(2)+1)/3. - Amiram Eldar, Mar 17 2022

A139277 a(n) = n*(8*n+5).

Original entry on oeis.org

0, 13, 42, 87, 148, 225, 318, 427, 552, 693, 850, 1023, 1212, 1417, 1638, 1875, 2128, 2397, 2682, 2983, 3300, 3633, 3982, 4347, 4728, 5125, 5538, 5967, 6412, 6873, 7350, 7843, 8352, 8877, 9418, 9975, 10548, 11137, 11742, 12363, 13000
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139273 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x*{c+8 + (8-c)*x}/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 3 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
Sum_{n>=1} 1/a(n) = (sqrt(2)-1)*Pi/10 - 4*log(2)/5 + sqrt(2)*log(sqrt(2)+1)/5 + 8/25. - Amiram Eldar, Mar 18 2022
E.g.f.: exp(x)*x*(13 + 8*x). - Elmo R. Oliveira, Dec 15 2024

A181890 a(n) = 8*n^2 + 14*n + 5.

Original entry on oeis.org

5, 27, 65, 119, 189, 275, 377, 495, 629, 779, 945, 1127, 1325, 1539, 1769, 2015, 2277, 2555, 2849, 3159, 3485, 3827, 4185, 4559, 4949, 5355, 5777, 6215, 6669, 7139, 7625, 8127, 8645, 9179, 9729, 10295, 10877, 11475, 12089, 12719, 13365, 14027, 14705, 15399, 16109, 16835, 17577
Offset: 0

Views

Author

Paul Curtz, Feb 01 2011

Keywords

Comments

A160050(4*n+1) = A033954(n); A160050(4*n+2) = A001107(n); the third quadrisection is a(n).
First 16 terms of clockwise spiral for odd numbers are as follows:
.
13--15--17--19
| |
11 1---3 21
| | |
9---7---5 23
|
31--29--27--25
.
a(n) comes from the third vertical.
Sequence found by reading the line from 5, in the direction 5, 27, in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Dec 25 2011

Crossrefs

Programs

Formula

a(n) = A160050(4*n+3).
a(n) = (2*n+1)*(4*n+5).
a(n) = a(n-1) + 16*n + 6.
a(n) = 2*a(n-1) - a(n-2) + 16.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (5 + 12*x - x^2)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 25 2011
a(n) = A014635(n+1) - 1. - Omar E. Pol, Dec 25 2011
From Vaclav Kotesovec, Aug 18 2018: (Start)
Sum_{n>=0} 1/a(n) = 2/3 - Pi/12 - log(2)/6 = 0.289342748774193011891907697817...
Sum_{n>=0} (-1)^n / a(n) = (1 + sqrt(2))*Pi/12 - 2/3 - sqrt(2)*log(tan(Pi/8))/6 = 0.173114712692423461587883724528539... (End)
a(n) = A014106(2*n+1). - Rick L. Shepherd, Aug 06 2019
E.g.f.: (5 + 22*x + 8*x^2)*exp(x). - Elmo R. Oliveira, Oct 19 2024

A153798 a(n) = A000043(n)-2.

Original entry on oeis.org

0, 1, 3, 5, 11, 15, 17, 29, 59, 87, 105, 125, 519, 605, 1277, 2201, 2279, 3215, 4251, 4421, 9687, 9939, 11211, 19935, 21699, 23207, 44495, 86241, 110501, 132047, 216089, 756837, 859431, 1257785, 1398267, 2976219, 3021375, 6972591, 13466915, 20996009, 24036581
Offset: 1

Views

Author

Omar E. Pol, Jan 20 2009

Keywords

Comments

Base 2 logarithm of A134708(n).

Crossrefs

Programs

  • Mathematica
    MersennePrimeExponent[Range[48]] - 2 (* Amiram Eldar, Oct 17 2024 *)

Extensions

a(40)-a(41) from Amiram Eldar, Oct 17 2024

A185438 a(n) = 8*n^2 - 2*n + 1.

Original entry on oeis.org

1, 7, 29, 67, 121, 191, 277, 379, 497, 631, 781, 947, 1129, 1327, 1541, 1771, 2017, 2279, 2557, 2851, 3161, 3487, 3829, 4187, 4561, 4951, 5357, 5779, 6217, 6671, 7141, 7627, 8129, 8647, 9181, 9731, 10297, 10879, 11477, 12091, 12721, 13367, 14029, 14707, 15401, 16111, 16837, 17579
Offset: 0

Views

Author

Paul Curtz, Feb 03 2011

Keywords

Comments

Odd numbers (A005408) written clockwise as a square spiral:
.
41--43--45--47--49--51
| |
39 13--15--17--19 53
| | | |
37 11 1---3 21 55
| | | | |
35 9---7---5 23 57
| | |
33--31--29--27--25 59
|
71--69--67--65--63--61
.
Walking in straight lines away from the center:
1, 17, 49, ... = A069129(n+1) = 1 - 8*n + 8*n^2,
1, 3, 21, ... = A033567(n) = 1 - 6*n + 8*n^2,
1, 15, 45, ... = A014634(n) = 1 + 6*n + 8*n^2,
1, 5, 25, ... = A080856(n) = 1 - 4*n + 8*n^2,
1, 13, 41, ... = A102083(n) = 1 + 4*n + 8*n^2,
1, 7, 29, ... = a(n) = 1 - 2*n + 8*n^2,
1, 11, 37, ... = A188135(n) = 1 + 2*n + 8*n^2,
1, 9, 33, ... = A081585(n) = 1 + 8*n^2,
5, 29, 69, ... = A108928(n+1) = -3 + 8*n^2,
7, 31, 71, ... = A157914(n+1) = -1 + 8*n^2,
9, 35, 77, ... = A033566(n+1) = -1 + 2*n + 8*n^2.
All are quadrisections of sequences in A181407(n) (example: A014634(n) and A033567(n) in A064038(n+1)) or of this family (?): a(n) is a quadrisection of f(n) = 1,1,1,1,2,7,11,8,11,29,37,23,28,67,79,46,... f(n) is just before A064038(n+1) (fifth vertical) in A181407(n). The companion to a(n) is A188135(n), another quadrisection of f(n). Two last quadrisections of f(n) are A054552(n) and A033951(n).
For n >= 1, bisection of A193867. - Omar E. Pol, Aug 16 2011
Also the sequence may be obtained by starting with the segment (1, 7) followed by the line from 7 in the direction 7, 29, ... in the square spiral whose vertices are the generalized hexagonal numbers (A000217). - Omar E. Pol, Aug 01 2016

Crossrefs

Programs

Formula

a(n) = a(n-1) + 16*n - 10 (n > 0).
a(n) = 2*a(n-1) - a(n-2) + 16 (n > 1).
a(n) = 3*(n-1) - 3*a(n-2) + a(n-3) (n > 2).
G.f.: (-1 - 4*x - 11*x^2)/(x-1)^3. - R. J. Mathar, Feb 03 2011
a(n) = A014635(n) + 1. - Bruno Berselli, Apr 09 2011
E.g.f.: exp(x)*(1 + 6*x + 8*x^2). - Elmo R. Oliveira, Nov 17 2024

A380472 a(n) = gcd_{primes P >= prime(n+1)} Product_{i=1..n} (P^2-i^2).

Original entry on oeis.org

1, 24, 360, 40320, 1814400, 479001600, 43589145600, 20922789888000, 3201186852864000, 2432902008176640000, 562000363888803840000, 620448401733239439360000, 201645730563302817792000000, 304888344611713860501504000000, 132626429906095529318154240000000, 263130836933693530167218012160000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the GCD of all numbers of the form Product_{i=1..n} (P^2-i^2) where P is a prime larger than or equal to the (n+1)-th prime.

Examples

			a(1) = 24 because 24 = GCD{P^2-1^2} GCD is taken on all numbers of the form P^2-1^2 with P a prime and P>3. This implies that for all primes P>3, P^2-1 is divisible by 24.
a(2) = 360 because 360 = GCD{(P^2-1^2)(P^2-2^2)} GCD is taken on all numbers of the form (P^2-1^2)(P^2-2^2) with P a prime and P>5. This implies that for all primes P>5, (P^2-1^2)(P^2-2^2) is divisible by 360.
a(3) = 40320 because 40320 = GCD{(P^2-1^2)(P^2-2^2)(P^2-3^2)}.
b(5) = 231 = a(7)/a(6).
c(2) = 112 = a(3)/a(2).
		

Crossrefs

Cf. A014634 (odd ratio), A014635 (even ratio, multiplied by 4), A084920.

Programs

  • Maple
    seq((2*n + 2)!*(3/4 - (-1)^n/4), n = 0..20)
  • Mathematica
    Table[(2*n + 2)!*(3/4 - (-1)^n/4), {n, 0, 20}]

Formula

E.g.f.: Sum_{n >= 0} a(n)/(2*n)!*z^(2*n) = (1 + 12*z^2 + 12*z^4 + 20*z^6 + 3*z^8)/(1 - z^4)^3.
a(n) = (2*n+2)!*(3/4-(-1)^n/4).
b(n) = (2*n+1)*(4*n+1) = a(2n)/a(2n-1) for n>=1 gives the odd ratios of a(n) (A014634).
c(n) = 4*2*n*(4*n-1) = a(2n-1)/a(2n-2) for n>=1 gives the even ratios of a(n) (4 times A014635).
Sum_{n>=0} 1/a(n) = 3*cosh(1)/2 - cos(1)/2 - 1. - Amiram Eldar, Jul 03 2025

A014772 Squares of even hexagonal numbers.

Original entry on oeis.org

36, 784, 4356, 14400, 36100, 76176, 142884, 246016, 396900, 608400, 894916, 1272384, 1758276, 2371600, 3132900, 4064256, 5189284, 6533136, 8122500, 9985600, 12152196, 14653584, 17522596, 20793600, 24502500, 28686736
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014635.

Programs

  • Mathematica
    Take[Table[n(2n-1),{n,60}],{2,-1,2}]^2 (* or *) LinearRecurrence[ {5,-10,10,-5,1},{36,784,4356,14400,36100},30] (* Harvey P. Dale, May 11 2012 *)

Formula

G.f.: 4*x*(9+151*x+199*x^2+25*x^3)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(1)=36, a(2)=784, a(3)=4356, a(4)=14400, a(5)=36100, a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, May 11 2012

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
More terms from Erich Friedman

A270704 Even 14-gonal (or tetradecagonal) numbers.

Original entry on oeis.org

0, 14, 76, 186, 344, 550, 804, 1106, 1456, 1854, 2300, 2794, 3336, 3926, 4564, 5250, 5984, 6766, 7596, 8474, 9400, 10374, 11396, 12466, 13584, 14750, 15964, 17226, 18536, 19894, 21300, 22754, 24256, 25806, 27404, 29050, 30744, 32486, 34276, 36114, 38000
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2016

Keywords

Comments

First bisection of A051866.
More generally, the ordinary generating function for the even k-gonal numbers with even k or for the first bisection of k-gonal numbers, is (k*x + (3*k - 8)*x^2)/(1 - x )^3.

Crossrefs

Cf. similar sequences of the even k-gonal numbers with even k: A016742 (k = 4), A014635 (k = 6), A014642 (k = 8), A028994 (k = 10), A193872 (k = 12).

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {0, 14, 76}, 41]
    Table[2 n (12 n - 5), {n, 0, 40}]
    PolygonalNumber[14,Range[0,80,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 12 2017 *)
  • PARI
    concat(0, Vec(2*x*(7 + 17*x)/(1 - x)^3 + O(x^60))) \\ Michel Marcus, Mar 22 2016

Formula

G.f.: 2*x*(7 + 17*x)/(1 - x)^3.
E.g.f.: 2*exp(x)*x*(7 + 12*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*n*(12*n - 5).
a(n) = A005843(n)*A017605(n-1).
Sum_{n>=1} 1/a(n) = (Pi - sqrt(3)*Pi + sqrt(3)*log(27) + sqrt(3)*log(64) + log(1728) + 6*log(sqrt(3)-1) + 2*sqrt(3)*log(sqrt(3)-1) - 6*log(sqrt(3)+1) - 2*sqrt(3)*log(sqrt(3)+1))/(20 + 20*sqrt(3)) = 0.102542837854…
Previous Showing 11-20 of 20 results.