cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 64 results. Next

A125000 Integers n such that 2^n == 19 (mod n).

Original entry on oeis.org

1, 17, 2873, 10081, 3345113, 420048673, 449349533, 2961432773, 19723772249, 821451792317, 1207046362769
Offset: 1

Views

Author

Zak Seidov, Nov 15 2006

Keywords

Comments

No other terms below 10^15. Some larger terms: 500796684074966733196301. - Max Alekseyev, May 23 2012

Crossrefs

Programs

  • Mathematica
    m = 19; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Terms 1, 17 prepended by Max Alekseyev, May 20 2011
a(8)-a(11) from Max Alekseyev, May 23 2012

A128126 Numbers k such that 2^k == 18 (mod k).

Original entry on oeis.org

1, 2, 14, 35, 77, 98, 686, 1715, 5957, 18995, 26075, 43921, 49901, 52334, 86555, 102475, 221995, 250355, 1228283, 1493597, 4260059, 6469715, 10538675, 15374219, 19617187, 22731275, 53391779, 60432239, 68597795, 85672139, 175791077
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128123, A128124, A128125.

Programs

  • Magma
    [1,2,14] cat [n: n in [1..10^8] | Modexp(2, n, n) eq 18]; // Vincenzo Librandi, Apr 05 2019
  • Mathematica
    m = 18; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
    Join[{1,2,14},Select[Range[86*10^6],PowerMod[2,#,#]==18&]] (* Harvey P. Dale, Feb 23 2025 *)
  • PARI
    isok(n) = Mod(2, n)^n == 18; \\ Michel Marcus, Oct 09 2018
    

Extensions

More terms from Joe Crump (joecr(AT)carolina.rr.com), Mar 04 2007
1, 2 and 14 added by N. J. A. Sloane, Apr 23 2007

A124977 Least positive number k such that 2^k mod k = 2n+1, or 0 if no such k exists.

Original entry on oeis.org

0, 4700063497, 19147, 25, 2228071, 262279, 95, 481, 45, 2873, 3175999, 555, 95921, 174934013, 777, 140039, 2463240427, 477, 91, 623, 2453, 55, 345119, 1131, 943, 21967, 135, 46979, 125, 3811, 23329, 155, 1064959, 245
Offset: 0

Views

Author

Zak Seidov, Nov 14 2006

Keywords

Examples

			a(3) = 25 because 2^25 = 33554432 = 7 + 25*1342177.
		

Crossrefs

Programs

  • Mathematica
    nk[n_] := Module[ {k}, k = 1;
      While[PowerMod[2, k, k] != 2 n + 1, k++]; k]
    Join[{0}, Table[nk[i], {i, 1, 33}]]  (* Robert Price, Oct 11 2018 *)

Formula

A bisection of A036236: a(n) = A036236(2n+1).

Extensions

Edited by Max Alekseyev, May 20 2011

A128125 Numbers k such that 2^k == 14 (mod k).

Original entry on oeis.org

1, 2, 3, 10, 1010, 61610, 469730, 2037190, 3820821, 9227438, 21728810, 24372562, 207034456857, 1957657325241, 2002159320610, 35169368880130, 36496347203230, 116800477091426
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^15. Some larger terms: 279283702428813463, 3075304070192893442, 21894426987819404424310, 4616079845508388554313022889, 82759461944940747300611642693066719359651817521, 446*(2^445-7)/1061319625781480182060453906975 (107 digits). - Max Alekseyev, Oct 03 2016

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128123, A128124, A128126.

Programs

  • Mathematica
    For[n=1, n<= 10^6, n++, If[PowerMod[2,n,n] == Mod[14,n], Print[n]]] (* Stefan Steinerberger, May 05 2007 *)
    m = 14; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1, 2, 3 and 10 added by N. J. A. Sloane, Apr 23 2007
More terms from Stefan Steinerberger, May 05 2007
a(13) from Max Alekseyev, May 15 2011
a(14), a(16), a(17) from Max Alekseyev, Dec 16 2013
a(15), a(18) from Max Alekseyev, Oct 03 2016

A066441 a(n) = 11^n mod n.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 1, 11, 9, 11, 1, 11, 1, 11, 1, 8, 11, 11, 1, 1, 17, 26, 25, 11, 1, 11, 1, 11, 19, 16, 1, 11, 7, 5, 1, 11, 1, 11, 33, 26, 29, 11, 1, 18, 1, 5, 29, 11, 1, 11, 9, 20, 5, 11, 1, 11, 59, 8, 1, 46, 55, 11, 21, 20, 11, 11, 1, 11, 47, 26, 49, 44, 25, 11, 1
Offset: 1

Views

Author

Robert G. Wilson v, Dec 27 2001

Keywords

Crossrefs

Cf. k^n mod n: A015910 (k=2), A066601 (k=3), A066602 (k=4), A066603 (k=5), A066604 (k=6), A066438 (k=7), A066439 (k=8), A066440 (k=9), A056969 (k=10), this sequence (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(11^n,n),n=1..80); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[11, n, n], {n, 80} ]
  • PARI
    a(n) = { lift(Mod(11, n)^n) } \\ Harry J. Smith, Feb 14 2010

A124965 Odd values of 2^n mod n corresponding to the n's given in A015911.

Original entry on oeis.org

7, 17, 43, 37, 13, 17, 57, 53, 85, 53, 63, 151, 93, 161, 107, 173, 67, 193, 251, 239, 43, 233, 107, 155, 161, 105, 81, 179, 233, 103, 239, 143, 125, 179, 349, 161, 305, 89, 257, 83, 143, 279, 197, 161, 371, 35, 15, 449, 253, 437, 403, 407, 255, 279, 353
Offset: 1

Views

Author

Zak Seidov, Nov 14 2006, corrected Nov 25 2006

Keywords

Crossrefs

Cf. A015911.

Programs

  • Mathematica
    Select[PowerMod[2,#,#]&/@Range[550],OddQ] (*Ray Chandler, Nov 20 2011*)

Formula

a(n) = A015910(A015911(n)).

Extensions

Edited by Ray Chandler at the suggestion of Jon E. Schoenfield, Nov 20 2011

A064367 a(n) = 2^n mod prime(n).

Original entry on oeis.org

0, 1, 3, 2, 10, 12, 9, 9, 6, 9, 2, 26, 33, 1, 9, 28, 33, 27, 13, 48, 8, 36, 47, 4, 95, 20, 76, 62, 23, 4, 8, 117, 68, 25, 138, 64, 150, 43, 61, 10, 72, 156, 40, 12, 73, 51, 48, 41, 24, 26, 71, 48, 32, 16, 128, 173, 74, 110, 118, 59, 30, 247, 202, 208, 284, 53, 128, 32, 139
Offset: 1

Views

Author

Labos Elemer, Sep 27 2001

Keywords

Comments

Below the exponent n=10000, some integers (like 5,7,14,17,19,22,...,44, etc.) are not yet present among residues. Will they appear later?
For a(n) with n <= 10^6, the following residues have not yet appeared: {19, 22, 46, 52, 57, 65, 70, 77, 81, 85, 88, 90, 91, 103, 104, 106, 108, 115, 120, 122, 123, 125, ..., 15472319} (14537148 terms). - Michael De Vlieger, Jul 16 2017
Heuristically, the probability of 2^n mod prime(n) taking a given value is approximately 1/prime(n) for large n. Since the sum of 1/prime(n) diverges, we should expect each positive integer to appear infinitely many times in the sequence. However, since the sum diverges very slowly, the first n where it appears may be very large. - Robert Israel, Jul 17 2017

Crossrefs

Programs

  • Maple
    seq(2 &^ n mod ithprime(n), n=1..100); # Robert Israel, Jul 17 2017
  • Mathematica
    Array[PowerMod[2, #, Prime@ #] &, 69] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    a(n) = { lift(Mod(2,prime(n))^n) } \\ Harry J. Smith, Sep 12 2009

Formula

a(n) = A000079(n) mod A000040(n).

Extensions

Definition corrected by Harry J. Smith, Sep 12 2009

A073798 pi(n) is a power of 2, where pi(n) = A000720(n) is the number of primes <= n.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 10, 19, 20, 21, 22, 53, 54, 55, 56, 57, 58, 131, 132, 133, 134, 135, 136, 311, 312, 719, 720, 721, 722, 723, 724, 725, 726, 1619, 1620, 3671, 3672, 8161, 8162, 8163, 8164, 8165, 8166, 17863, 17864, 17865, 17866, 17867, 17868, 17869, 17870
Offset: 1

Views

Author

Labos Elemer, Aug 14 2002

Keywords

Comments

The numbers occur in blocks of consecutive integers: 2, 3-4, 7-10, 19-22, ...; the n-th block starts at the 2^n-th prime (A033844) and ends just before the (2^n + 1)-th prime (A051439).

Examples

			10 is in the sequence since pi(10)=4=2^2.
		

Crossrefs

Programs

  • Mathematica
    pow2[n_] := n==1||(n>1&&IntegerQ[n/2]&&pow2[n/2]); Select[Range[20000], pow2[PrimePi[ # ]]&]
    Flatten@Table[Range[p = Prime[2^k], NextPrime[p] - 1], {k, 0, 11}] (* Ivan Neretin, Jan 21 2017 *)
  • PARI
    isok(n) = my(pi = primepi(n)); (pi==1) || (pi==2) || (ispower(primepi(n),,&k) && (k==2)); \\ Michel Marcus, Jan 23 2017

Extensions

Edited by Dean Hickerson, Aug 15 2002

A096196 a(n) = (1 + 2^n) mod n.

Original entry on oeis.org

0, 1, 0, 1, 3, 5, 3, 1, 0, 5, 3, 5, 3, 5, 9, 1, 3, 11, 3, 17, 9, 5, 3, 17, 8, 5, 0, 17, 3, 5, 3, 1, 9, 5, 19, 29, 3, 5, 9, 17, 3, 23, 3, 17, 18, 5, 3, 17, 31, 25, 9, 17, 3, 29, 44, 33, 9, 5, 3, 17, 3, 5, 9, 1, 33, 65, 3, 17, 9, 45, 3, 65, 3, 5, 69, 17, 19, 65, 3, 17, 0, 5, 3, 65, 33, 5, 9, 81, 3
Offset: 1

Views

Author

Labos Elemer, Jul 26 2004

Keywords

Crossrefs

Programs

A106262 An invertible triangle of remainders of 2^n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 2, 1, 0, 1, 0, 4, 2, 1, 0, 2, 0, 3, 4, 2, 1, 0, 1, 0, 1, 2, 4, 2, 1, 0, 2, 0, 2, 4, 1, 4, 2, 1, 0, 1, 0, 4, 2, 2, 0, 4, 2, 1, 0, 2, 0, 3, 4, 4, 0, 8, 4, 2, 1, 0, 1, 0, 1, 2, 1, 0, 7, 8, 4, 2, 1, 0, 2, 0, 2, 4, 2, 0, 5, 6, 8, 4, 2, 1, 0, 1, 0, 4, 2, 4, 0, 1, 2, 5, 8, 4, 2, 1
Offset: 0

Views

Author

Paul Barry, Apr 28 2005

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2, 1;
  0, 1, 2, 1;
  0, 2, 0, 2, 1;
  0, 1, 0, 4, 2, 1;
  0, 2, 0, 3, 4, 2, 1;
  0, 1, 0, 1, 2, 4, 2, 1;
  0, 2, 0, 2, 4, 1, 4, 2, 1;
  0, 1, 0, 4, 2, 2, 0, 4, 2, 1;
		

Crossrefs

Cf. A106263 (row sums), A106264 (diagonal sums).

Programs

  • Magma
    [Modexp(2, n-k, k+2): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 10 2023
    
  • Mathematica
    Table[PowerMod[2, n-k, k+2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 10 2023 *)
  • SageMath
    flatten([[power_mod(2,n-k,k+2) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jan 10 2023

Formula

T(n, k) = 2^(n-k) mod (k+2).
Sum_{k=0..n} T(n, k) = A106263(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A106264(n) (diagonal sums).
From G. C. Greubel, Jan 10 2023: (Start)
T(n, 0) = A000007(n).
T(n, 1) = A000034(n+1).
T(2*n, n) = A213859(n).
T(2*n, n-1) = A015910(n+1).
T(2*n, n+1) = A294390(n+3).
T(2*n+1, n-1) = A112983(n+1).
T(2*n+1, n+1) = A294389(n+3).
T(2*n-1, n-1) = A062173(n+1). (End)
Previous Showing 21-30 of 64 results. Next