cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 66 results. Next

A372293 Odd numbers that do not occur in the odd bisection of A371094.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 143, 145, 147, 149, 151, 153, 155, 157
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2024

Keywords

Comments

Odd numbers that do not occur in array A371100.

Crossrefs

Setwise difference A005408 \ A372290.
Subsequences: A004767, A017077.

Programs

  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    isA372293(n) = if(!(n%2),0,forstep(k=1,n,2,if(A371094(k)==n,return(0))); (1));

A047468 Numbers that are congruent to {1, 2} mod 8.

Original entry on oeis.org

1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 41, 42, 49, 50, 57, 58, 65, 66, 73, 74, 81, 82, 89, 90, 97, 98, 105, 106, 113, 114, 121, 122, 129, 130, 137, 138, 145, 146, 153, 154, 161, 162, 169, 170, 177, 178, 185, 186, 193, 194, 201, 202, 209, 210, 217, 218, 225, 226, 233
Offset: 1

Views

Author

Keywords

Crossrefs

Union of A017077 and A017089.
Cf. A047467.

Programs

  • Mathematica
    Flatten[#+{1,2}&/@(8Range[0,30])] (* or *) LinearRecurrence[{1,1,-1},{1,2,9},60] (* Harvey P. Dale, Mar 26 2013 *)
  • PARI
    a(n)=(n-1)\2*8+2-n%2 \\ Charles R Greathouse IV, May 14 2012

Formula

a(n) = 8*n - a(n-1) - 13 (with a(1)=1). - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+x+6*x^2)/((1-x)^2*(1+x)). - Colin Barker, May 13 2012
a(n) = 1 + 8*floor((n-1)/2) + ((n-1) mod 2). - Alois P. Heinz, May 13 2012
a(n) = (-3*(3 + (-1)^n) + 8*n)/2. - Colin Barker, May 14 2012
a(1)=1, a(2)=2, a(3)=9, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Mar 26 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/16 + log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021
E.g.f.: 6 + ((8*x - 9)*exp(x) - 3*exp(-x))/2. - David Lovler, Sep 02 2022

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A050479 a(n) = C(n)*(9*n + 1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 10, 38, 140, 518, 1932, 7260, 27456, 104390, 398684, 1528436, 5878600, 22673308, 87662200, 339653880, 1318498920, 5126862150, 19965297660, 77855108100, 303969268680, 1188105796020, 4648590733800, 18205030164360, 71356399639200, 279909199969308, 1098799886728152
Offset: 0

Views

Author

Barry E. Williams, Dec 24 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=9 of A330965.

Programs

  • Magma
    [Catalan(n)*(9*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (4-7*x-4*Sqrt(1-4*x))/(x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
  • Mathematica
    A050479[n_] := CatalanNumber[n]*(9*n + 1);
    Array[A050479, 30, 0] (* Paolo Xausa, Aug 24 2025 *)

Formula

4*(n+1)*a(n) + (-23*n-1)*a(n-1) + 14*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Feb 13 2015
-(n+1)*(9*n-8)*a(n) + 2*(9*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Feb 13 2015
G.f.: (4 - 7*x - 4*sqrt(1 - 4*x))/(x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 8*binomial(2*n, n-1) = A000984(n) + 8*A001791(n).
a(n) ~ 4^n * 9/sqrt(Pi*n). (End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 05 2020

A157337 a(n) = 128*n^2 + 32*n + 1.

Original entry on oeis.org

161, 577, 1249, 2177, 3361, 4801, 6497, 8449, 10657, 13121, 15841, 18817, 22049, 25537, 29281, 33281, 37537, 42049, 46817, 51841, 57121, 62657, 68449, 74497, 80801, 87361, 94177, 101249, 108577, 116161, 124001, 132097, 140449, 149057
Offset: 1

Views

Author

Vincenzo Librandi, Feb 27 2009

Keywords

Comments

The identity (128*n^2+32*n+1)^2 - (4*n^2+n)*(64*n+8)^2 = 1 can be written as a(n)^2 - A007742(n)*A157336(n)^2 = 1 (see also second part of the comment in A157336). - Vincenzo Librandi, Jan 29 2012

Crossrefs

Programs

  • Magma
    I:=[161, 577, 1249]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{161,577,1249},50] (* Vincenzo Librandi, Jan 29 2012 *)
  • PARI
    for(n=1, 40, print1(128*n^2 + 32*n + 1", ")); \\ Vincenzo Librandi, Jan 29 2012

Formula

G.f.: x*(x^2 + 94*x + 161)/(1-x)^3. - Vincenzo Librandi, Jan 29 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 29 2012
a(n) = 2*A017077(n)^2 - 1. - Bruno Berselli, Jan 29 2012
E.g.f.: (1 + 160*x + 128*x^2)*exp(x) - 1. - G. C. Greubel, Feb 01 2018

A185377 Product of exactly two distinct primes congruent to 1 mod 8 (A007519).

Original entry on oeis.org

697, 1241, 1513, 1649, 1921, 2329, 2993, 3281, 3649, 3961, 3977, 4097, 4369, 4633, 4777, 5321, 5617, 5729, 6001, 6497, 6817, 6953, 7081, 7361, 7633, 7769, 7913, 8249, 8633, 8857, 9553, 9673, 9809, 9881, 10001, 10057, 10081, 10217, 10489, 10537
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2011

Keywords

Comments

Subset of semiprimes A001358. Subset of {d = p_1 * p_2 * ... * p_m where p_i == 1 (mod 8), 1 <= i <= m are distinct primes} as occurs in Wei, p. 2.

Examples

			10001 is in this sequence because 10001 = 73 * 137 = A007519(3) * A007519(7).
		

Crossrefs

Programs

  • Mathematica
    p = Select[Prime[Range[200]], Mod[#, 8] == 1 &]; Sort[Reap[Do[n=p[[i]] p[[j]]; If[n <= p[[1]]p[[-1]], Sow[n]], {i, 2, Length[p]}, {j, i - 1}]][[2,1]]]
  • PARI
    list(lim)=my(v=List(),P=List(),t); forprime(p=2,lim\17, if(p%8==1, listput(P,p))); for(i=2,#P, my(p=P[i]); for(j=1,i-1, t=p*P[j]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jul 03 2016

Formula

{A007519(i) * A007519(j) for i < j}.
{A000040(i) * A000040(j) for i < j, and A000040(i) in A017077 and A000040(j) in A017077}.

A281334 Triangle read by rows: T(n, k) = (n - k)*(k + 1)^3 + k, 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 2, 9, 2, 3, 17, 29, 3, 4, 25, 56, 67, 4, 5, 33, 83, 131, 129, 5, 6, 41, 110, 195, 254, 221, 6, 7, 49, 137, 259, 379, 437, 349, 7, 8, 57, 164, 323, 504, 653, 692, 519, 8, 9, 65, 191, 387, 629, 869, 1035, 1031, 737, 9, 10, 73, 218, 451, 754, 1085, 1378, 1543, 1466, 1009, 10
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 23 2017

Keywords

Examples

			Triangle begins:
   0;
   1,    1;
   2,    9,    2;
   3,   17,   29,    3;
   4,   25,   56,   67,    4;
   5,   33,   83,  131,  129,    5;
   6,   41,  110,  195,  254,  221,    6;
   7,   49,  137,  259,  379,  437,  349,    7;
   8,   57,  164,  323,  504,  653,  692,  519,    8;
   9,   65,  191,  387,  629,  869, 1035, 1031,  737,    9;
  10,   73,  218,  451,  754, 1085, 1378, 1543, 1466, 1009,   10;
  ...
		

Crossrefs

Cf. Triangle read by rows: T(n,k) = (n-k)*(k+1)^m+k: A003056 (m = 0), A059036 (m = 1), A274602 (m = 2), this sequence (m = 3).
Cf. A001477 (column 0), A017077 (column 1), A281546 (column 2), A242604 (middle diagonal).

Programs

  • Magma
    /* As triangle */ [[(n-k)*(k+1)^3+k: k in [1..n]]: n in [0..10]];
    
  • Mathematica
    t[n_, k_] := (n - k)*(k + 1)^3 + k; Table[ t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Feb 09 2017 *)
  • PARI
    for(n=0,10,for(k=0,n,print1((n-k)*(k+1)^3+k,", "))) \\ Derek Orr, Feb 26 2017

Formula

Row sums sum_{k>=0} T(n,k) = n*(n+1)*(3*n^3+12*n^2+13*n+32)/60. - R. J. Mathar, Mar 19 2017

A330983 Alternatively add and multiply pairs of the nonnegative integers.

Original entry on oeis.org

1, 6, 9, 42, 17, 110, 25, 210, 33, 342, 41, 506, 49, 702, 57, 930, 65, 1190, 73, 1482, 81, 1806, 89, 2162, 97, 2550, 105, 2970, 113, 3422, 121, 3906, 129, 4422, 137, 4970, 145, 5550, 153, 6162, 161, 6806, 169, 7482, 177, 8190, 185, 8930, 193, 9702, 201, 10506, 209
Offset: 1

Views

Author

George E. Antoniou, Jan 05 2020

Keywords

Comments

In groups of two, add and multiply the integers: 0+1, 2*3, 4+5, 6*7, ....

Crossrefs

Cf. A330987.
Interspersion of A017077 and A256833. - Michel Marcus, Jan 06 2020

Programs

  • Mathematica
    a[n_]:=If[OddQ[n],4n-3,2(n-1)(2n-1)]; Array[a,53] (* Stefano Spezia, Jan 05 2020 *)
  • PARI
    Vec(x*(1 + 6*x + 6*x^2 + 24*x^3 - 7*x^4 + 2*x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jan 07 2020

Formula

From Colin Barker, Jan 05 2020: (Start)
G.f.: x*(1 + 6*x + 6*x^2 + 24*x^3 - 7*x^4 + 2*x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
a(n) = (1/2)*(-1 + 5*(-1)^n - 2*(1 + 5*(-1)^n)*n + 4*(1+(-1)^n)*n^2).
(End)
E.g.f.: (2 + 4*x*(1 + x))*cosh(x) - (3 + 2*x)*sinh(x) - 2. - Stefano Spezia, Jan 05 2020 after Colin Barker

A330987 Alternatively add and half-multiply pairs of the nonnegative integers.

Original entry on oeis.org

1, 3, 9, 21, 17, 55, 25, 105, 33, 171, 41, 253, 49, 351, 57, 465, 65, 595, 73, 741, 81, 903, 89, 1081, 97, 1275, 105, 1485, 113, 1711, 121, 1953, 129, 2211, 137, 2485, 145, 2775, 153, 3081, 161, 3403, 169, 3741, 177, 4095, 185, 4465, 193, 4851, 201, 5253, 209
Offset: 1

Views

Author

George E. Antoniou, Jan 05 2020

Keywords

Comments

In groups of two, add and half-multiply the integers: 0+1, (2*3)/2, 4+5, (6*7)/2, ....
From Bernard Schott, Jan 06 2020: (Start)
The bisection of this sequence gives:
For n odd = 2*k+1, k >= 0: a(2*k+1) = 8*k+1 = A017077(k),
For n even = 2*k, k >= 1: a(2*k) = T(4*k-2) = A000217(4*k-2) = (2*k-1)*(4*k-1) = A033567(k) where T(j) is the j-th triangular number. (End)

Crossrefs

Cf. A330983.
Interspersion of A017077 and A033567 (excluding first term). - Michel Marcus, Jan 06 2020

Programs

  • Mathematica
    a[n_]:=If[OddQ[n],4n-3,(n-1)(2n-1)]; Array[a,53] (* Stefano Spezia, Jan 05 2020 *)
  • PARI
    Vec(x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jan 06 2020

Formula

From Colin Barker, Jan 05 2020: (Start)
G.f.: x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
a(n) = -1 + 2*(-1)^n - (1/2)*(-1+7*(-1)^n)*n + (1+(-1)^n)*n^2.
(End)
E.g.f.: (1 + 4*x + 2*x^2)*cosh(x) - (3 + x)*sinh(x) - 1. - Stefano Spezia, Jan 05 2020 after Colin Barker

A348845 Part two of the trisection of A017101: a(n) = 11 + 24*n.

Original entry on oeis.org

11, 35, 59, 83, 107, 131, 155, 179, 203, 227, 251, 275, 299, 323, 347, 371, 395, 419, 443, 467, 491, 515, 539, 563, 587, 611, 635, 659, 683, 707, 731, 755, 779, 803, 827, 851, 875, 899, 923, 947, 971, 995, 1019, 1043, 1067
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2021

Keywords

Comments

The trisection of A017101 = {3 + 8*k}A017077%20=%20%7B3*(1%20+%2012*n)%7D">{k>=0} gives 3*A017077 = {3*(1 + 12*n)}{n>=0}, {a(n)}A350051%20=%20%7B19%20+%2024*n%7D">{n >= 0} and A350051 = {19 + 24*n}{n>=0}. These three sequences are congruent to 3 modulo 8 and to 3, 5, and 1 modulo 6, respectively.

Crossrefs

Programs

  • Mathematica
    24 * Range[0, 44] + 11 (* Amiram Eldar, Dec 18 2021 *)

Formula

a(n) = 11 + 24*n = 11 + A008606(n), for n >= 0
a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -13, a(0) = 11.
G.f.: (11 + 13*x)/(1-x)^2.
E.g.f.: (11 + 24*x)*exp(x).

A350051 Part three of the trisection of A017101: a(n) = 19 + 24*n.

Original entry on oeis.org

19, 43, 67, 91, 115, 139, 163, 187, 211, 235, 259, 283, 307, 331, 355, 379, 403, 427, 451, 475, 499, 523, 547, 571, 595, 619, 643, 667, 691, 715, 739, 763, 787, 811, 835, 859, 883, 907, 931, 955, 979, 1003, 1027, 1051, 1075
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2021

Keywords

Comments

The trisection of A017101 = {3 + 8*k}A017077%20=%20%7B3*(1%20+%2012*n)%7D">{k>=0} gives 3*A017077 = {3*(1 + 12*n)}{n>=0}, {A348845(n)}{n >= 0} and {a(n)}{n>=0}. These three sequences are congruent to 3 modulo 8 and to 3, 5, and 1 modulo 6, respectively.

Crossrefs

Programs

Formula

a(n) = 19 + 24*n = 19 + A008606(n), for n >= 0
a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -5, a(0) = 19.
G.f.: (19 + 5*x)/(1-x)^2.
E.g.f.: (19 + 24*x)*exp(x).
Previous Showing 41-50 of 66 results. Next