A372293
Odd numbers that do not occur in the odd bisection of A371094.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 143, 145, 147, 149, 151, 153, 155, 157
Offset: 1
-
A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
isA372293(n) = if(!(n%2),0,forstep(k=1,n,2,if(A371094(k)==n,return(0))); (1));
A047468
Numbers that are congruent to {1, 2} mod 8.
Original entry on oeis.org
1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 41, 42, 49, 50, 57, 58, 65, 66, 73, 74, 81, 82, 89, 90, 97, 98, 105, 106, 113, 114, 121, 122, 129, 130, 137, 138, 145, 146, 153, 154, 161, 162, 169, 170, 177, 178, 185, 186, 193, 194, 201, 202, 209, 210, 217, 218, 225, 226, 233
Offset: 1
-
Flatten[#+{1,2}&/@(8Range[0,30])] (* or *) LinearRecurrence[{1,1,-1},{1,2,9},60] (* Harvey P. Dale, Mar 26 2013 *)
-
a(n)=(n-1)\2*8+2-n%2 \\ Charles R Greathouse IV, May 14 2012
A050479
a(n) = C(n)*(9*n + 1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 10, 38, 140, 518, 1932, 7260, 27456, 104390, 398684, 1528436, 5878600, 22673308, 87662200, 339653880, 1318498920, 5126862150, 19965297660, 77855108100, 303969268680, 1188105796020, 4648590733800, 18205030164360, 71356399639200, 279909199969308, 1098799886728152
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[Catalan(n)*(9*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
-
R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (4-7*x-4*Sqrt(1-4*x))/(x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
-
A050479[n_] := CatalanNumber[n]*(9*n + 1);
Array[A050479, 30, 0] (* Paolo Xausa, Aug 24 2025 *)
A157337
a(n) = 128*n^2 + 32*n + 1.
Original entry on oeis.org
161, 577, 1249, 2177, 3361, 4801, 6497, 8449, 10657, 13121, 15841, 18817, 22049, 25537, 29281, 33281, 37537, 42049, 46817, 51841, 57121, 62657, 68449, 74497, 80801, 87361, 94177, 101249, 108577, 116161, 124001, 132097, 140449, 149057
Offset: 1
-
I:=[161, 577, 1249]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
-
LinearRecurrence[{3,-3,1},{161,577,1249},50] (* Vincenzo Librandi, Jan 29 2012 *)
-
for(n=1, 40, print1(128*n^2 + 32*n + 1", ")); \\ Vincenzo Librandi, Jan 29 2012
A185377
Product of exactly two distinct primes congruent to 1 mod 8 (A007519).
Original entry on oeis.org
697, 1241, 1513, 1649, 1921, 2329, 2993, 3281, 3649, 3961, 3977, 4097, 4369, 4633, 4777, 5321, 5617, 5729, 6001, 6497, 6817, 6953, 7081, 7361, 7633, 7769, 7913, 8249, 8633, 8857, 9553, 9673, 9809, 9881, 10001, 10057, 10081, 10217, 10489, 10537
Offset: 1
10001 is in this sequence because 10001 = 73 * 137 = A007519(3) * A007519(7).
-
p = Select[Prime[Range[200]], Mod[#, 8] == 1 &]; Sort[Reap[Do[n=p[[i]] p[[j]]; If[n <= p[[1]]p[[-1]], Sow[n]], {i, 2, Length[p]}, {j, i - 1}]][[2,1]]]
-
list(lim)=my(v=List(),P=List(),t); forprime(p=2,lim\17, if(p%8==1, listput(P,p))); for(i=2,#P, my(p=P[i]); for(j=1,i-1, t=p*P[j]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jul 03 2016
A281334
Triangle read by rows: T(n, k) = (n - k)*(k + 1)^3 + k, 0 <= k <= n.
Original entry on oeis.org
0, 1, 1, 2, 9, 2, 3, 17, 29, 3, 4, 25, 56, 67, 4, 5, 33, 83, 131, 129, 5, 6, 41, 110, 195, 254, 221, 6, 7, 49, 137, 259, 379, 437, 349, 7, 8, 57, 164, 323, 504, 653, 692, 519, 8, 9, 65, 191, 387, 629, 869, 1035, 1031, 737, 9, 10, 73, 218, 451, 754, 1085, 1378, 1543, 1466, 1009, 10
Offset: 1
Triangle begins:
0;
1, 1;
2, 9, 2;
3, 17, 29, 3;
4, 25, 56, 67, 4;
5, 33, 83, 131, 129, 5;
6, 41, 110, 195, 254, 221, 6;
7, 49, 137, 259, 379, 437, 349, 7;
8, 57, 164, 323, 504, 653, 692, 519, 8;
9, 65, 191, 387, 629, 869, 1035, 1031, 737, 9;
10, 73, 218, 451, 754, 1085, 1378, 1543, 1466, 1009, 10;
...
Cf. Triangle read by rows: T(n,k) = (n-k)*(k+1)^m+k:
A003056 (m = 0),
A059036 (m = 1),
A274602 (m = 2), this sequence (m = 3).
-
/* As triangle */ [[(n-k)*(k+1)^3+k: k in [1..n]]: n in [0..10]];
-
t[n_, k_] := (n - k)*(k + 1)^3 + k; Table[ t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Feb 09 2017 *)
-
for(n=0,10,for(k=0,n,print1((n-k)*(k+1)^3+k,", "))) \\ Derek Orr, Feb 26 2017
A330983
Alternatively add and multiply pairs of the nonnegative integers.
Original entry on oeis.org
1, 6, 9, 42, 17, 110, 25, 210, 33, 342, 41, 506, 49, 702, 57, 930, 65, 1190, 73, 1482, 81, 1806, 89, 2162, 97, 2550, 105, 2970, 113, 3422, 121, 3906, 129, 4422, 137, 4970, 145, 5550, 153, 6162, 161, 6806, 169, 7482, 177, 8190, 185, 8930, 193, 9702, 201, 10506, 209
Offset: 1
-
a[n_]:=If[OddQ[n],4n-3,2(n-1)(2n-1)]; Array[a,53] (* Stefano Spezia, Jan 05 2020 *)
-
Vec(x*(1 + 6*x + 6*x^2 + 24*x^3 - 7*x^4 + 2*x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jan 07 2020
A330987
Alternatively add and half-multiply pairs of the nonnegative integers.
Original entry on oeis.org
1, 3, 9, 21, 17, 55, 25, 105, 33, 171, 41, 253, 49, 351, 57, 465, 65, 595, 73, 741, 81, 903, 89, 1081, 97, 1275, 105, 1485, 113, 1711, 121, 1953, 129, 2211, 137, 2485, 145, 2775, 153, 3081, 161, 3403, 169, 3741, 177, 4095, 185, 4465, 193, 4851, 201, 5253, 209
Offset: 1
-
a[n_]:=If[OddQ[n],4n-3,(n-1)(2n-1)]; Array[a,53] (* Stefano Spezia, Jan 05 2020 *)
-
Vec(x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jan 06 2020
A348845
Part two of the trisection of A017101: a(n) = 11 + 24*n.
Original entry on oeis.org
11, 35, 59, 83, 107, 131, 155, 179, 203, 227, 251, 275, 299, 323, 347, 371, 395, 419, 443, 467, 491, 515, 539, 563, 587, 611, 635, 659, 683, 707, 731, 755, 779, 803, 827, 851, 875, 899, 923, 947, 971, 995, 1019, 1043, 1067
Offset: 0
A350051
Part three of the trisection of A017101: a(n) = 19 + 24*n.
Original entry on oeis.org
19, 43, 67, 91, 115, 139, 163, 187, 211, 235, 259, 283, 307, 331, 355, 379, 403, 427, 451, 475, 499, 523, 547, 571, 595, 619, 643, 667, 691, 715, 739, 763, 787, 811, 835, 859, 883, 907, 931, 955, 979, 1003, 1027, 1051, 1075
Offset: 0
Comments