cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 379 results. Next

A175522 A000120-perfect numbers.

Original entry on oeis.org

2, 25, 95, 111, 119, 123, 125, 169, 187, 219, 221, 247, 289, 335, 365, 411, 415, 445, 485, 493, 505, 629, 655, 685, 695, 697, 731, 767, 815, 841, 871, 943, 949, 965, 985, 1003, 1139, 1207, 1241, 1261, 1263, 1273, 1343, 1387, 1465, 1469, 1507, 1513, 1529, 1563
Offset: 1

Views

Author

Vladimir Shevelev, Dec 03 2010

Keywords

Comments

Let A(n), n>=1, be an infinite positive sequence.
We call a number n:
A-deficient if Sum{d|n, d
A-abundant if Sum{d|n, d A(n),
and
A-perfect if Sum{d|n, d
depending on the sum over the proper divisors of n.
The definition generalizes the standard nomenclature of deficient (A005100), abundant (A005101) and perfect numbers (A000396), which is recovered by setting A(n) = n = A000027(n).
Conjecture: if there exist infinitely many A-deficient numbers and infinitely many A-abundant numbers, then there exist infinitely many A-perfect numbers.
Note that the sequence contains squares of all Fermat primes larger than 3 (see A019434). [This would also hold for squares of any hypothetical Fermat primes after the fifth one, 65537. Comment clarified by Antti Karttunen, May 14 2015]
A192895(a(n)) = 0. - Reinhard Zumkeller, Jul 12 2011

Examples

			Proper divisors of 119 are 1,7,17. Since A000120(1)+A000120(7)+A000120(17)=A000120(119), then 119 is in the sequence.
		

Crossrefs

Cf. A175524 (deficient version), A175526 (abundant version), A000120, A000396.
Subsequence of A257691 (non-abundant version).
Positions of zeros in A192895.

Programs

  • Haskell
    import Data.List (elemIndices)
    a175522 n = a175522_list !! (n-1)
    a175522_list = map (+ 1) $ elemIndices 0 a192895_list
    -- Reinhard Zumkeller, Jul 12 2011
    
  • Mathematica
    binw[n_] := DigitCount[n, 2, 1]; Select[Range[1500], binw[#] == DivisorSum[#, binw[#1] &]/2 &] (* Amiram Eldar, Dec 14 2020 *)
  • PARI
    is(n)=sumdiv(n,d,hammingweight(d))==2*hammingweight(n) \\ Charles R Greathouse IV, Jan 28 2016
    
  • Python
    from sympy import divisors
    def A000120(n): return bin(n).count('1')
    def aupto(limit):
      alst = []
      for m in range(1, limit+1):
        if A000120(m) == sum(A000120(d) for d in divisors(m)[:-1]): alst += [m]
      return alst
    print(aupto(1563)) # Michael S. Branicky, Feb 25 2021
  • Sage
    A000120 = lambda x: x.digits(base=2).count(1)
    is_A175522 = lambda x: sum(A000120(d) for d in divisors(x)) == 2*A000120(x)
    A175522 = filter(is_A175522, IntegerRange(1, 10**4))
    # D. S. McNeil, Dec 04 2010
    

Extensions

More terms from Amiram Eldar, Feb 18 2019

A059242 Numbers k such that 2^k + 5 is prime.

Original entry on oeis.org

1, 3, 5, 11, 47, 53, 141, 143, 191, 273, 341, 16541, 34001, 34763, 42167, 193965, 282203
Offset: 1

Author

Tony Davie (ad(AT)dcs.st-and.ac.uk), Jan 21 2001

Keywords

Comments

The subsequence of primes starts 3, 5, 11, 47, 53, 191, ... - Vincenzo Librandi, Aug 07 2010
For k in this sequence, 2^(k-1)*(2^k+5) is in A141548: numbers of deficiency 6. - M. F. Hasler, Apr 23 2015
a(18) > 5*10^5. - Robert Price, Aug 23 2015
a(18) > 6*10^5. - Tyler NeSmith, Jan 18 2021
All terms are odd - Elmo R. Oliveira, Dec 01 2023

Examples

			2^3 + 5 = 13 is prime, but 2^4 + 5 = 21 is not.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), this sequence (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

Extensions

More terms from Santi Spadaro, Oct 04 2002
a(12) from Hans Havermann, Oct 07 2002
a(13)-a(15) from Charles R Greathouse IV, Oct 07 2011
a(16)-a(17) from Robert Price, Dec 06 2013

A057197 Numbers k such that 2^k + 15 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 22, 23, 26, 30, 32, 40, 42, 46, 61, 72, 76, 155, 180, 198, 203, 310, 328, 342, 508, 510, 515, 546, 808, 1563, 2772, 3882, 3940, 4840, 7518, 11118, 11552, 11733, 12738, 12858, 17421, 44122, 64660, 163560, 172455, 180496, 325866, 481840, 1009168
Offset: 1

Author

Robert G. Wilson v, Sep 15 2000

Keywords

Comments

a(55) > 5*10^5. - Robert Price, Sep 14 2015
For these numbers k, 2^(k-1)*(2^k+15) has deficiency 16 (see A125248). - M. F. Hasler, Jul 18 2016

Examples

			For k = 5, 2^5 + 15 = 47 is prime.
For k = 15, 2^15 + 15 = 32783 is prime.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), this sequence (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1500] | IsPrime(2^n+15)]; // Vincenzo Librandi, Aug 28 2015
    
  • Mathematica
    Do[ If[ PrimeQ[ 2^n + 15 ], Print[n]], { n, 1, 12422 }]
    Select[Range[15000], PrimeQ[2^# + 15] &] (* Vincenzo Librandi, Aug 28 2015 *)
  • PARI
    for(n=1,oo,ispseudoprime(2^n+15)&&print1(n",")) \\ M. F. Hasler, Jul 18 2016

Extensions

a(45)-a(53) from Robert Price, Dec 06 2013
a(54) from Robert Price, Sep 14 2015
a(55) from Stefano Morozzi, added by Elmo R. Oliveira, Dec 11 2023

A333123 Consider the mapping k -> (k - (k/p)), where p is any of k's prime factors. a(n) is the number of different possible paths from n to 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 5, 5, 1, 1, 5, 5, 3, 10, 5, 5, 4, 3, 7, 5, 9, 9, 12, 12, 1, 17, 2, 21, 9, 9, 14, 16, 4, 4, 28, 28, 9, 21, 14, 14, 5, 28, 7, 7, 12, 12, 14, 16, 14, 28, 23, 23, 21, 21, 33, 42, 1, 33, 47, 47, 3, 61, 56, 56, 14, 14, 23, 28, 28, 103, 42, 42, 5
Offset: 1

Author

Ali Sada and Robert G. Wilson v, Mar 09 2020

Keywords

Comments

The iteration always terminates at 1, regardless of the prime factor chosen at each step.
Although there may exist multiple paths to 1, their path lengths (A064097) are the same! See A064097 for a proof. Note that this behavior does not hold if we allow any divisor of k.
First occurrence of k or 0 if no such value exists: 1, 6, 12, 24, 14, 96, 26, 85, 28, 21, 578, 30, 194, 38, 164, 39, 33, 104, 1538, 112, 35, 328, 58, 166, ..., .
Records: 1, 2, 3, 5, 10, 12, 17, 21, 28, 33, 42, 47, 61, 103, 168, ..., .
Record indices: 1, 6, 12, 14, 21, 30, 33, 35, 42, 62, 63, 66, 69, ..., .
When viewed as a graded poset, the paths of the said graph are the chains of the corresponding poset. This poset is also a lattice (see Ewan Delanoy's answer to Peter Kagey's question at the Mathematics Stack Exchange link). - Antti Karttunen, May 09 2020

Examples

			a(1): {1}, therefore a(1) = 1;
a(6): {6, 4, 2, 1} or {6, 3, 2, 1}, therefore a(6) = 2;
a(12): {12, 8, 4, 2, 1}, {12, 6, 4, 2, 1} or {12, 6, 3, 2, 1}, therefore a(12) = 3;
a(14): {14, 12, 8, 4, 2, 1}, {14, 12, 6, 4, 2, 1}, {14, 12, 6, 3, 2, 1}, {14, 7, 6, 4, 2, 1} or {14, 7, 6, 3, 2, 1}, therefore a(14) = 5.
From _Antti Karttunen_, Apr 05 2020: (Start)
For n=15 we have five alternative paths from 15 to 1: {15, 10, 5, 4, 2, 1}, {15, 10, 8, 4, 2, 1}, {15, 12, 8, 4, 2, 1},  {15, 12, 6, 4, 2, 1},  {15, 12, 6, 3, 2, 1}, therefore a(15) = 5. These form a graph illustrated below:
        15
       / \
      /   \
    10     12
    / \   / \
   /   \ /   \
  5     8     6
   \_   |  __/|
     \__|_/   |
        4     3
         \   /
          \ /
           2
           |
           1
(End)
		

Crossrefs

Cf. A064097, A332809 (size of the lattice), A332810.
Cf. A332904 (sum of distinct integers present in such a graph/lattice), A333000 (sum over all paths), A333001, A333785.
Cf. A332992 (max. outdegree), A332999 (max. indegree), A334144 (max. rank level).
Cf. A334230, A334231 (meet and join).
Partial sums of A332903.
Cf. also tables A334111, A334184.

Programs

  • Mathematica
    a[n_] := Sum[a[n - n/p], {p, First@# & /@ FactorInteger@n}]; a[1] = 1; (* after PARI coding by Rémy Sigrist *) Array[a, 70]
    (* view the various paths *)
    f[n_] := Block[{i, j, k, p, q, mtx = {{n}}}, Label[start]; If[mtx[[1, -1]] != 1, j = Length@ mtx;  While[j > 0, k = mtx[[j, -1]]; p = First@# & /@ FactorInteger@k; q = k - k/# & /@ p; pl = Length@p; If[pl > 1, Do[mtx = Insert[mtx, mtx[[j]], j], {pl - 1}]]; i = 1;  While[i < 1 + pl, mtx[[j + i - 1]] = Join[mtx[[j + i - 1]], {q[[i]]}]; i++]; j--]; Goto[start], mtx]]
  • PARI
    for (n=1, #a=vector(80), print1 (a[n]=if (n==1, 1, vecsum(apply(p -> a[n-n/p], factor(n)[,1]~)))", ")) \\ Rémy Sigrist, Mar 11 2020

Formula

a(n) = 1 iff n is a power of two (A000079) or a Fermat Prime (A019434).
a(p) = a(p-1) if p is prime.
a(n) = Sum_{p prime and dividing n} a(n - n/p) for any n > 1. - Rémy Sigrist, Mar 11 2020

A035095 Smallest prime congruent to 1 (mod prime(n)).

Original entry on oeis.org

3, 7, 11, 29, 23, 53, 103, 191, 47, 59, 311, 149, 83, 173, 283, 107, 709, 367, 269, 569, 293, 317, 167, 179, 389, 607, 619, 643, 1091, 227, 509, 263, 823, 557, 1193, 907, 1571, 653, 2339, 347, 359, 1087, 383, 773, 3547, 797, 2111, 2677, 5449, 2749, 467
Offset: 1

Author

Keywords

Comments

This is a version of the "least prime in special arithmetic progressions" problem.
Smallest numbers m such that largest prime factor of Phi(m) = prime(n), the n-th prime, also seems to be prime and identical to n-th term of A035095. See A068211, A068212, A065966: Min[x : A068211(x)=prime(n)] = A035095(n); e.g., Phi(a(7)) = Phi(103) = 2*3*17, of which 17 = p(7) is the largest prime factor, arising first here.
It appears that A035095, A066674, A125878 are probably all the same, but see the comments in A066674. - N. J. A. Sloane, Jan 05 2013
Minimum of the smallest prime factors of F(n,i) = (i^prime(n)-1)/(i-1), when i runs through all integers in [2, prime(n)]. Every prime factor of F(n,i) is congruent to 1 modulo prime(n). - Vladimir Shevelev, Nov 26 2014
Conjecture: a(n) is the smallest prime p such that gpf(p-1) = prime(n). See A023503. - Thomas Ordowski, Aug 06 2017
For n>1, a(n) is the smallest prime congruent to 1 mod (2*prime(n)). - Chai Wah Wu, Apr 28 2025

Examples

			a(8) = 191 because in the prime(8)k+1 = 19k+1 sequence, 191 is the smallest prime.
		

References

  • E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Bd 1 (reprinted Chelsea 1953).
  • E. C. Titchmarsh, A divisor problem, Renc. Circ. Math. Palermo, 54 (1930) pp. 414-429.
  • P. Turan, Über Primzahlen der arithmetischen Progression, Acta Sci. Math. (Szeged), 8 (1936/37) pp. 226-235.

Programs

  • Mathematica
    a[n_] := Block[{p = Prime[n]}, r = 1 + p; While[ !PrimeQ[r], r += p]; r]; Array[a, 51] (* Jean-François Alcover, Sep 20 2011, after PARI *)
    a[n_]:=If[n<2,3,Block[{p=Prime[n]},r=1+2*p;While[!PrimeQ[r],r+=2*p]];r];Array[a,51] (* Zak Seidov, Dec 14 2013 *)
  • PARI
    a(n)=local(p,r);p=prime(n);r=1;while(!isprime(r),r+=p);r
    
  • PARI
    {my(N=66); forprime(p=2, , forprime(q=p+1,10^10, if((q-1)%p==0, print1(q,", "); N-=1; break)); if(N==0,break)); } \\ Joerg Arndt, May 27 2016
    
  • Python
    from itertools import count
    from sympy import prime, isprime
    def A035095(n): return 3 if n==1 else next(filter(isprime,count((p:=prime(n)<<1)+1,p))) # Chai Wah Wu, Apr 28 2025

Formula

According to a long-standing conjecture (see the 1979 Wagstaff reference), a(n) <= prime(n)^2 + 1. This would be sufficient to imply that a(n) is the smallest prime such that greatest prime divisor of a(n)-1 is prime(n), the n-th prime: A006530(a(n)-1) = A000040(n). This in turn would be sufficient to imply that no value occurs twice in this sequence. - Franklin T. Adams-Watters, Jun 18 2010
a(n) = 1 + A035096(n)*A000040(n). - Zak Seidov, Dec 27 2013

Extensions

Edited by Franklin T. Adams-Watters, Jun 18 2010
Minor edits by N. J. A. Sloane, Jun 27 2010
Edited by N. J. A. Sloane, Jan 05 2013

A045544 Odd values of n for which a regular n-gon can be constructed by compass and straightedge.

Original entry on oeis.org

3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295
Offset: 1

Keywords

Comments

If there are no more Fermat primes, then 4294967295 is the last term in the sequence.
From Daniel Forgues, Jun 17 2011: (Start)
The 31 = 2^5 - 1 terms of this sequence are the nonempty products of distinct Fermat primes. The 5 known Fermat primes are in A019434.
Prepending the empty product, i.e., 1, to this sequence gives A004729.
The initial term for this sequence is thus a(1) (offset=1), since a(0) should correspond to the omitted empty product, term a(0) of A004729.
Rows 1 to 31 of Sierpiński's triangle, if interpreted as a binary number converted to decimal (A001317), give a(1) to a(31). (End)

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 73 at pp. 181-182.

Crossrefs

Cf. A019434. Essentially same as A004729.
Coincides with A001317 for the first 31 terms only. - Robert G. Wilson v, Dec 22 2001
Cf. A053576.

Programs

  • Mathematica
    Union[Times@@@Rest[Subsets[{3,5,17,257,65537}]]] (* Harvey P. Dale, Sep 20 2011 *)

Formula

Each term is the product of distinct odd Fermat primes.
Sum_{n>=1} 1/a(n) = -1 + Product_{n>=1} (1+1/A019434(n)) = 0.7007354948... >= 1003212011/1431655765 = sigma(2^32-1)/(2^32-1) - 1, with equality if there are only five Fermat primes (A019434). - Amiram Eldar, Jan 22 2022

A057200 Numbers k such that 2^k + 17 is prime.

Original entry on oeis.org

1, 13, 21, 33, 81, 129, 285, 297, 769, 3381, 4441, 7065, 77121, 133437, 184189, 191745, 1279921
Offset: 1

Author

Robert G. Wilson v, Sep 16 2000

Keywords

Comments

a(17) > 5*10^5. - Robert Price, Oct 05 2015
For numbers k in this sequence, 2^(k-1)*(2^k+17) has deficiency 18 (see A223608). - M. F. Hasler, Jul 18 2016
All terms are odd. - Elmo R. Oliveira, Nov 19 2023

Crossrefs

Cf. A223608.
Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), this sequence (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+17)]; // Vincenzo Librandi, Aug 28 2015
    
  • Mathematica
    Do[ If[ PrimeQ[ 2^n + 17 ], Print[ n ]], {n, 0, 11811} ]
    Select[Range[10000], PrimeQ[2^# + 17] &] (* Vincenzo Librandi, Aug 28 2015 *)
  • PARI
    is(n)=isprime(2^n+17) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(13)-a(16) from Robert Price, Aug 24 2015
Edited by M. F. Hasler, Jul 18 2016
a(17) found by Stefano Morozzi, added by Elmo R. Oliveira, Nov 19 2023

A102633 Numbers k such that 2^k + 11 is prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 23, 29, 31, 55, 71, 77, 297, 573, 1301, 1555, 1661, 4937, 5579, 6191, 6847, 6959, 19985, 26285, 47093, 74167, 149039, 175137, 210545, 240295, 306153, 326585, 345547
Offset: 1

Author

Lei Zhou, Jan 20 2005

Keywords

Comments

a(34) > 5*10^5. - Robert Price, Aug 26 2015
For numbers k in this sequence, 2^(k-1)*(2^k+11) has deficiency 12 (see A141549). All terms are odd since 4^n+11 == 1+2 == 0 (mod 3). - M. F. Hasler, Jul 18 2016

Examples

			k = 1: 2^1 + 11 = 13 is prime.
k = 3: 2^3 + 11 = 19 is prime.
k = 2: 2^2 + 11 = 15 is not prime.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), this sequence (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Mathematica
    Do[ If[ PrimeQ[2^n + 11], Print[n]], {n, 15250}] (* Robert G. Wilson v, Jan 21 2005 *)
  • PARI
    for(n=1,9e9,ispseudoprime(2^n+11)&&print1(n",")) \\ M. F. Hasler, Jul 18 2016

Extensions

a(18)-a(22) from Robert G. Wilson v, Jan 21 2005
a(23)-a(33) from Robert Price, Dec 06 2013
Edited by M. F. Hasler, Jul 18 2016

A191363 Numbers m such that sigma(m) = 2*m - 2.

Original entry on oeis.org

3, 10, 136, 32896, 2147516416
Offset: 1

Author

Luis H. Gallardo, May 31 2011

Keywords

Comments

Let k be a nonnegative integer such that F(k) = 2^(2^k) + 1 is prime (a Fermat prime A019434), then m = (F(k)-1)*F(k)/2 appears in the sequence.
Conjecture: a(1)=3 is the only odd term of the sequence.
Conjecture: All terms of the sequence are of the above form derived from Fermat primes.
The sequence has 5 (known) terms in common with sequences A055708 (k-1 | sigma(k)) and A056006 (k | sigma(k)+2) since {a(n)} is a subsequence of both.
The first five terms of the sequence are respectively congruent to 3, 4, 4, 4, 4 modulo 6.
After a(5) there are no further terms < 8*10^9.
Up to m = 1312*10^8 there are no further terms in the class congruent to 4 modulo 6.
a(6) > 10^12. - Donovan Johnson, Dec 08 2011
a(6) > 10^13. - Giovanni Resta, Mar 29 2013
a(6) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
See A125246 for numbers with deficiency 4, i.e., sigma(m) = 2*m - 4, and A141548 for numbers with deficiency 6. - M. F. Hasler, Jun 29 2016 and Jul 17 2016
A term m of this sequence multiplied by a prime p not dividing it is abundant if and only if p < m-1. For each of a(2..5) there is such a prime near this limit (here: 7, 127, 30197, 2147483647) such that a(k)*p is a primitive weird number, cf. A002975. - M. F. Hasler, Jul 19 2016
Any term m of this sequence can be combined with any term j of A088831 to satisfy the property (sigma(m) + sigma(j))/(m+j) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. [Proof: If m = a(n) and j = A088831(k), then sigma(m) = 2m-2 and sigma(j) = 2j+2. Thus, sigma(m) + sigma(j) = (2m-2) + (2j+2) = 2m + 2j = 2(m+j), which implies that (sigma(m) + sigma(j))/(m+j) = 2(m+j)/(m+j) = 2.] - Timothy L. Tiffin, Sep 13 2016
At least the first five terms are a subsequence of A295296 and of A295298. - David A. Corneth, Antti Karttunen, Nov 26 2017
Conjectures: all terms are second hexagonal numbers (A014105). There are no terms with middle divisors. - Omar E. Pol, Oct 31 2018
The symmetric representation of sigma(m) of each of the 5 numbers in the sequence consists of 2 parts of width 1 that meet at the diagonal (subsequence of A246955). - Hartmut F. W. Hoft, Mar 04 2022
The first five terms coincide with the sum of two successive terms of A058891. The same is not true for a(6), if such exists. - Omar E. Pol, Mar 03 2023

Examples

			For n=1, a(1) = 3 since sigma(3) = 4 = 2*3 - 2.
		

Crossrefs

Cf. A000203, A002975, A056006, A055708, A088831 (abundance 2).
Cf. A033880, A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A125248 (deficiency 16).
Cf. A058891.

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -2]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    ok[n_] := DivisorSigma[1,n] == 2*n-2; Select[ Table[ 2^(2^k-1) * (2^(2^k)+1), {k, 0, 5}], ok] (* Jean-François Alcover, Sep 14 2011, after conjecture *)
    Select[Range[10^6], DivisorSigma[1, #] == 2 # - 2 &] (* Michael De Vlieger, Sep 14 2016 *)
  • PARI
    zp(a,b) = {my(c,c1,s); c = a; c1 = 2*c-2;
    while(c
    				
  • PARI
    a(k)=(2^2^k+1)<<(2^k-1) \\ For k<6. - M. F. Hasler, Jul 27 2016
    

Formula

a(n) = (A019434(n)-1)*A019434(n)/2 for all terms known so far. - M. F. Hasler, Jun 29 2016

A246955 Numbers j for which the symmetric representation of sigma(j) has two parts, each of width one.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 89, 92, 94, 97, 101, 103, 106, 107, 109, 113, 116, 118, 122, 124, 127, 131, 134, 136, 137, 139, 142, 146, 148, 149, 151, 152, 157, 158, 163, 164, 166, 167, 172, 173, 178, 179, 181, 184, 188, 191, 193, 194, 197, 199
Offset: 1

Author

Hartmut F. W. Hoft, Sep 08 2014

Keywords

Comments

The sequence is the intersection of A239929 (sigma(j) has two parts) and of A241008 (sigma(j) has an even number of parts of width one).
The numbers in the sequence are precisely those defined by the formula for the triangle, see the link. The symmetric representation of sigma(j) has two parts, each part having width one, precisely when j = 2^(k - 1) * p where 2^k <= row(j) < p, p is prime and row(j) = floor((sqrt(8*j + 1) - 1)/2). Therefore, the sequence can be written naturally as a triangle as shown in the Example section.
The symmetric representation of sigma(j) = 2*j - 2 consists of two regions of width 1 that meet on the diagonal precisely when j = 2^(2^m - 1)*(2^(2^m) + 1) where 2^(2^m) + 1 is a Fermat prime (see A019434). This subsequence of numbers j is 3, 10, 136, 32896, 2147516416, ...[?]... (A191363).
The k-th column of the triangle starts in the row whose initial entry is the first prime larger than 2^(k+1) (that sequence of primes is A014210, except for 2).
Observation: at least the first 82 terms coincide with the numbers j with no middle divisors whose largest divisor <= sqrt(j) is a power of 2, or in other words, coincide with the intersection of A071561 and A365406. - Omar E. Pol, Oct 11 2023

Examples

			We show portions of the first eight columns, 0 <= k <= 7, of the triangle.
0    1    2     3     4     5     6     7
3
5    10
7    14
11   22   44
13   26   52
17   34   68    136
19   38   76    152
23   46   92    184
29   58   116   232
31   62   124   248
37   74   148   296   592
41   82   164   328   656
43   86   172   344   688
47   94   188   376   752
53   106  212   424   848
59   118  236   472   944
61   122  244   488   976
67   134  268   536   1072  2144
71   142  284   568   1136  2272
.    .    .     .     .     .
.    .    .     .     .     .
127  254  508   1016  2032  4064
131  262  524   1048  2096  4192  8384
137  274  548   1096  2192  4384  8768
.    .    .     .     .     .     .
.    .    .     .     .     .     .
251  502  1004  2008  4016  8032  16064
257  514  1028  2056  4112  8224  16448  32896
263  526  1052  2104  4208  8416  16832  33664
Since 2^(2^4) + 1 = 65537 is the 6543rd prime, column k = 15 starts with 2^15*(2^(2^16) + 1) = 2147516416 in row 6542 with 65537 in column k = 0.
For an image of the symmetric representations of sigma(m) for all values m <= 137 in the triangle see the link.
The first column is the sequence of odd primes, see A065091.
The second column is the sequence of twice the primes starting with 10, see A001747.
The third column is the sequence of four times the primes starting with 44, see A001749.
For related references also see A033676 (largest divisor of n less than or equal to sqrt(n)).
		

Programs

  • Mathematica
    (* functions path[] and a237270[ ] are defined in A237270 *)
    atmostOneDiagonalsQ[n_]:=SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], - 1] - path[n - 1], 1]]]
    (* data *)
    Select[Range[200], Length[a237270[#]]==2 && atmostOneDiagonalsQ[#]&]
    (* function for computing triangle in the Example section through row 55 *)
    TableForm[Table[2^k Prime[n], {n, 2, 56}, {k, 0, Floor[Log[2, Prime[n]] - 1]}], TableDepth->2]

Formula

Formula for the triangle of numbers associated with the sequence:
P(n, k) = 2^k * prime(n) where n >= 2, 0 <= k <= floor(log_2(prime(n)) - 1).
Previous Showing 31-40 of 379 results. Next