cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 69 results. Next

A070826 One half of product of first n primes A000040.

Original entry on oeis.org

1, 3, 15, 105, 1155, 15015, 255255, 4849845, 111546435, 3234846615, 100280245065, 3710369067405, 152125131763605, 6541380665835015, 307444891294245705, 16294579238595022365, 961380175077106319535, 58644190679703485491635, 3929160775540133527939545, 278970415063349480483707695
Offset: 1

Views

Author

Wolfdieter Lang, May 10 2002

Keywords

Comments

Also, with offset 0, product of first n odd primes. - N. J. A. Sloane, Feb 26 2017
Identical to A002110(n)/2, n>=1.
a(n+1) is the least odd number with exactly n distinct prime divisors. - Labos Elemer, Mar 24 2003
Also, odd numbers n for which sigma(n)*phi(n)/n^2 reaches a new record low, monotonically decreasing to the lower bound 8/Pi^2. - M. F. Hasler, Jul 08 2025

Crossrefs

Cf. A003266 (for Fibonacci), A070825 (for Lucas), A003046 (for Catalan).
Cf. also A002110, A024451, A060389, A091852, A276086, A203008 [= A003415(a(1+n))].
Range of A196529.

Programs

  • Maple
    a:=n->mul(ithprime(j), j=2..n):seq(a(n), n=1..17); # Zerinvary Lajos, Aug 24 2008
  • Mathematica
    Rest[ FoldList[ Times, 1, Prime[ Range[ 18]] ]]/2 (* Robert G. Wilson v, Feb 17 2004 *)
    FoldList[Times, 1, Prime[Range[2, 18]]] (* Zak Seidov, Jan 26 2009 *)
  • PARI
    a(n) = prod(k=2, n, prime(k)) \\ Michel Marcus, Mar 25 2017, simplified by M. F. Hasler, Jul 09 2025
    
  • Python
    from sympy import primorial
    def A070826(n): return primorial(n)>>1 # Chai Wah Wu, Jul 21 2022

Formula

a(n) = A002110(n)/2.
From Antti Karttunen, Feb 06 2024: (Start)
a(1) = 1, and for n > 1, a(n) = A276086(A060389(n-1)).
a(n) = A024451(n) - 2*A203008(n-1).
(End)
a(n) = A000040(n)*a(n-1) for n > 1, a(1) = 1. - M. F. Hasler, Jul 09 2025

Extensions

Formula corrected by Gary Detlefs, Dec 07 2011

A046024 a(n) = smallest k such that Sum_{ i = 1..k } 1/prime(i) exceeds n.

Original entry on oeis.org

1, 3, 59, 361139, 43922730588128390
Offset: 0

Views

Author

Keywords

Comments

The corresponding primes prime(a(n)) are in A016088.
Index m for which the prime harmonic number p[ m ] := Sum[ 1/Prime[ k ],{k,1,m} ] >= n.

Crossrefs

Cf. A024451/A002110 for Sum_{i = 1..n} 1/prime(i).

Programs

  • Mathematica
    Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) <= n, m++];
    m, {n, 0, 4}] (* Robert Price, Mar 27 2019 *)
  • PARI
    a(n)=my(t); forprime(p=2,, t+=1./p; if(t>n, return(primepi(p)))) \\ Charles R Greathouse IV, Apr 29 2015

Formula

From Jonathan Sondow, Apr 17 2013: (Start)
a(n) = A000720(A016088(n)) = A000720(A096232(n))+1.
a(n) = e^(e^(n + O(1))), see comment in A223037. [corrected by Charles R Greathouse IV, Aug 22 2013] (End)
a(n) = A103591(2*n). - Michel Marcus, Aug 22 2013

Extensions

a(4) found by Tomás Oliveira e Silva (tos(AT)det.ua.pt), using the fourth term of A016088. - Dec 14 2005
a(0) from Jonathan Sondow, Apr 16 2013

A351228 Numbers k for which A003415(k) >= A276086(k), where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.

Original entry on oeis.org

6, 30, 32, 36, 60, 210, 212, 213, 214, 216, 240, 420, 2310, 2312, 2313, 2314, 2315, 2316, 2317, 2318, 2319, 2320, 2322, 2324, 2328, 2340, 2342, 2343, 2344, 2346, 2348, 2349, 2352, 2370, 2372, 2376, 2400, 2520, 2522, 2523, 2524, 2526, 2528, 2550, 2552, 2730, 4620, 4622, 4623, 4624, 4626, 4628, 4632, 4650, 4652, 4656
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Comments

Conjecture: Apart from the initial 6, the rest of terms are the numbers k for which A003415(k) > A276086(k), thus giving the positions of zeros in A351232. In other words, it seems that only k=6 satisfies A003415(k) = A276086(k). See also comments in A351088.

Crossrefs

Union of A370127 and A370128.
Subsequence of A328118.
Subsequences: A351229, A369959, A369960, A369970 (after its two initial terms).
Cf. also A369650.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA351228(n) = (A003415(n)>=A276086(n));

A327978 Numbers whose arithmetic derivative (A003415) is a primorial number (A002110) > 1.

Original entry on oeis.org

9, 161, 209, 221, 2189, 2561, 3281, 3629, 5249, 5549, 6401, 7181, 7661, 8321, 8909, 9089, 9869, 10001, 10349, 10541, 10961, 11009, 11021, 29861, 38981, 52601, 66149, 84101, 93029, 97481, 132809, 150281, 158969, 163301, 197669, 214661, 227321, 235721, 285449, 321989, 338021, 357881, 369701, 381449, 385349, 416261, 420089, 442889
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2019

Keywords

Comments

Numbers n such that A327859(n) = A276086(A003415(n)) is an odd prime.
Composite terms in A328232.
Although it first might seem that the numbers whose arithmetic derivative is A002110(k) all appear before any of those whose arithmetic derivative is A002110(k+1), that is not true, as for example, we have a(56) = 570149, and A003415(570149) = 2310, a(57) = 570209, and A003415(570209) = 30030, but then a(58) = 573641 with A003415(573641) = 2310 again.
Because this is a subsequence of A327862 (all primorials > 1 are of the form 4k+2), only odd numbers are present.
Conjecture: No multiples of 5 occur in this sequence, and no multiples of 3 after the initial 9.
Of the first 10000 terms, all others are semiprimes (with 9 the only square one), except 1547371 = 7^2 * 23 * 1373 and 79332523 = 17^2 * 277 * 991, the latter being the only known term whose decimal expansion ends with 3. If all solutions were semiprimes p*q such that p+q = A002110(k) for some k > 1 (see A002375), it would be a sufficient reason for the above conjecture to hold. - David A. Corneth and Antti Karttunen, Oct 11 2019
In any case, the solutions have to be of the form "odd numbers with an even number of prime factors with multiplicity" (see A235992), and terms must also be cubefree (A004709), as otherwise the arithmetic derivative would not be squarefree.
Sequence A366890 gives the non-Goldbachian solutions, i.e., numbers that are not semiprimes. See also A368702. - Antti Karttunen, Jan 17 2024

Crossrefs

Cf. A351029 (number of k for which k' = A002110(n)).
Cf. A368703, A368704 (the least and the greatest k for which k' = A002110(n)).
Cf. A366890 (terms that are not semiprimes), A368702 (numbers k such that k' is one of the terms of this sequence).
Subsequence of following sequences: A004709, A189553, A327862, A328232, A328234.

Programs

  • Mathematica
    ad[n_] := n * Total @ (Last[#]/First[#] & /@ FactorInteger[n]); primQ[n_] := Max[(f = FactorInteger[n])[[;;,2]]] == 1 && PrimePi[f[[-1,1]]] == Length[f]; Select[Range[10^4], primQ[ad[#]] &] (* Amiram Eldar, Oct 11 2019 *)
  • PARI
    A002620(n) = ((n^2)>>2);
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); };
    isA327978flat(n) = { my(u=A003415(n)); ((u>1)&&(1==A276150(u))); }; \\ Slow!
    k=0; for(n=1,A002620(30030),if(isA327978flat(n), k++; write("b327978.txt", k, " ", n)));

Formula

A327969(a(n)) = 4 for all n.

A106830 Numerator of Sum_{ primes p <= n} 1/p.

Original entry on oeis.org

0, 1, 5, 5, 31, 31, 247, 247, 247, 247, 2927, 2927, 40361, 40361, 40361, 40361, 716167, 716167, 14117683, 14117683, 14117683, 14117683, 334406399, 334406399, 334406399, 334406399, 334406399, 334406399, 9920878441, 9920878441, 314016924901, 314016924901
Offset: 1

Views

Author

N. J. A. Sloane, May 22 2005

Keywords

Comments

Very similar to A024451, which see for further information.

Examples

			0, 1/2, 5/6, 5/6, 31/30, 31/30, 247/210, 247/210, 247/210, 247/210, 2927/2310, 2927/2310, 40361/30030, 40361/30030, 40361/30030, ...
		

Crossrefs

Denominators are in A034386.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Mathematica
    Accumulate[Table[If[PrimeQ[n],1/n,0],{n,40}]]//Numerator (* Harvey P. Dale, Feb 17 2018 *)

A115964 Denominator of Sum_{i=1..n} 1/prime(i)^3.

Original entry on oeis.org

8, 216, 27000, 9261000, 12326391000, 27081081027000, 133049351085651000, 912585499096480209000, 11103427767506874702903000, 270801499821725167129101267000, 8067447481189014453943055845197000
Offset: 1

Views

Author

Jonathan Vos Post, Mar 14 2006

Keywords

Comments

Numerators are in A115963.
Also the primorials cubed. - Reikku Kulon, Sep 18 2008

Examples

			1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
		

Crossrefs

Cf. A115963 (numerators).
Cf. A024451 (numerator of sum_{i=1..n} 1/prime(i)), A002110 (primorial, also denominator of sum_{i=1..n} 1/prime(i)), A061015 (numerator of sum_{i=1..n} 1/prime(i)^2).
Cf. A061742, A100778. - Reikku Kulon, Sep 18 2008

Programs

Formula

a(n) = denominator of Sum_{i=1..n} 1/A000040(i)^3.
a(n) = A002110(n)^3. - Reikku Kulon, Sep 18 2008

A024530 Numerator of -Sum_{k=1..n} (-1)^k / prime(k).

Original entry on oeis.org

0, 1, 1, 11, 47, 727, 7141, 151427, 2366603, 64131559, 1636722341, 57208085801, 1916138684507, 85982424199597, 3392993977055461, 172553478253276697, 8530444564835173531, 535885387802465283059, 30766248305796169627529
Offset: 0

Views

Author

Keywords

Comments

Limit of the fractional values is A078437. - Charles R Greathouse IV, Apr 22 2011

Examples

			0/1, 1/2, 1/6, 11/30, 47/210, 727/2310, 7141/30030, 151427/510510, ...
		

Crossrefs

Denominators are A002110.

Programs

  • Maple
    A024530 := n->numer(add((-1)^(k+1)/ithprime(k),k=1..n));
  • Mathematica
    a[n_] := Numerator[ -Total[(-1)^Range[n] / Prime[ Range[n]]]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 12 2011 *)
  • PARI
    a(n)=numerator(-sum(k=1,n,(-1)^k/prime(k)));
    concat(0, vector(33,n,a(n)))  /* show terms */

Formula

a(n+1) = a(n)*prime(n+1) + (-1)^n*primorial(prime(n)) for n >= 2. - Alexandre Herrera, Sep 03 2023

Extensions

a(0)=0 prepended by Seiichi Manyama, Jul 25 2021

A250133 Denominator of the harmonic mean of the first n composite numbers.

Original entry on oeis.org

1, 5, 13, 47, 271, 301, 2287, 491, 1045, 367, 1919, 1999, 22829, 23599, 121691, 1628183, 15054047, 15440147, 15800507, 32276689, 32931889, 570652913, 83022119, 84480719, 1631388461, 1656970061, 1681912121, 11939665247, 12098387447, 12253582487, 285324285601
Offset: 1

Views

Author

Colin Barker, Nov 14 2014

Keywords

Comments

Also numerator of the sum of the reciprocals of the first n composite numbers (A250133/A296358).

Examples

			a(3) = 13 because the first 3 composite numbers are [4,6,8] and 3 / (1/4+1/6+1/8) = 72/13.
1/4, 5/12, 13/24, 47/72, 271/360, 301/360, 2287/2520, 491/504, 1045/1008, 367/336, 1919/1680, 1999/1680, 22829/18480, ... = A250133/A296358
		

Crossrefs

Cf. A250132 (numerators).
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • PARI
    harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
    composite(n) = for(k=0, primepi(n), isprime(n++)&&k--); n \\ from A002808
    s=vector(100); for(k=1, #s, s[k]=denominator(harmonicmean(vector(k, i, composite(i))))); s

A296358 Denominator of the sum of the reciprocals of the first n composite numbers.

Original entry on oeis.org

4, 12, 24, 72, 360, 360, 2520, 504, 1008, 336, 1680, 1680, 18480, 18480, 92400, 1201200, 10810800, 10810800, 10810800, 21621600, 21621600, 367567200, 52509600, 52509600, 997682400, 997682400, 997682400, 6983776800, 6983776800, 6983776800
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2017

Keywords

Comments

Same as A282512 without the initial 1.

Examples

			1/4, 5/12, 13/24, 47/72, 271/360, 301/360, 2287/2520, 491/504, 1045/1008, 367/336, 1919/1680, 1999/1680, 22829/18480, ... = A250133/A296358
		

Crossrefs

Numerators are in A250133.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Mathematica
    Accumulate[1/Select[Range[100],CompositeQ]]//Denominator (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 19 2018 *)

Formula

Gerry Felderman (Personal communication, Dec 15 2017) observes that Sum_{k=1..n} 1/composite(k) (= A250133(n)/A296358(n)) ~ log(n) - loglog(n) ~ log pi(n) as n -> oo.

A024528 a(n) = n-th elementary symmetric function of {1, prime(1), prime(2), ..., prime(n)}.

Original entry on oeis.org

1, 3, 11, 61, 457, 5237, 70391, 1226677, 23817373, 557499269, 16390571671, 514577415031, 19239924846277, 796257656832167, 34543329507310391, 1636619248175258407, 87355709935877186981, 5186576044693944076609
Offset: 0

Views

Author

Keywords

Comments

a(0) through a(12) are squarefree. - Gerald McGarvey, Sep 03 2004
For n>0 a(n) is the determinant of the n X n matrix with elements M[i,j] = 1+Prime[i] if i=j and 1 otherwise. - Alexander Adamchuk, Jun 02 2006

Examples

			a(0) = 1
a(1) = 1*2 + A002110(0) = 2 + 1 = 3
a(2) = 3*3 + A002110(1) = 9 + 2 = 11
a(3) = 11*5 + A002110(2) = 55 + 6 = 61
a(4) = 61*7 + A002110(3) = 427 + 30 = 457
a(5) = 457*11 + A002110(4) = 5027 + 210 = 5237
a(6) = 5237*13 + A002110(5) = 68081 + 2310 = 70391
a(7) = 70391*17 + A002110(6) = 1196647 + 30030 = 1226677 - _Philippe Deléham_, Jun 03 2015
		

Crossrefs

Cf. A125707 (indices of primes).

Programs

  • Maple
    N:= 30: # to get a(0) to a(N)
    Primes:= [seq(ithprime(i),i=1..N)]:
    seq(mul(Primes[i],i=1..n)*(1+add(1/Primes[i],i=1..n)),n=0..N); # Robert Israel, Jun 03 2015
  • Mathematica
    Table[ Det[ DiagonalMatrix[ Table[ Prime[i], {i, 1, n} ] ] + 1 ], {n, 1, 20} ] (* Alexander Adamchuk, Jun 02 2006 *)
    p[0] = 1; p[n_] := Prime[n];
    t[n_] := Table[p[k], {k, 0, n}]
    a[n_] := SymmetricPolynomial[n, t[n]]
    Table[a[n], {n, 0, 20}]
    (* Clark Kimberling, Aug 18 2012 *)

Formula

This sequence is the numerators of the prime harmonic numbers + 1, i.e. a(n)/A002110(n) = Sum_{i=0...n} 1/p(i) where p(0) = 1, p(i) is the i-th prime for n > 0 and A002110 are the primorial numbers. - Gerald McGarvey, Sep 03 2004
a(n) = Det[ DiagonalMatrix[ Table[ Prime[i], {i, 1, n} ] ] + 1 ]. - Alexander Adamchuk, Jun 02 2006
a(0) = 1, a(n) = A000040(n)*a(n-1) + A002110(n-1) for n>=1. - Philippe Deléham, Jun 03 2015

Extensions

More terms from T. D. Noe, Sep 09 2004
Previous Showing 11-20 of 69 results. Next