cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 101 results. Next

A075288 Interprimes (A024675) which are of the form s*prime, s=13.

Original entry on oeis.org

26, 39, 1313, 4771, 7033, 9607, 11947, 12233, 14963, 15613, 18707, 20527, 24323, 26507, 27443, 30823, 31057, 33917, 36257, 43277, 45383, 48061, 48347, 48997, 52039, 57083, 61477, 66547, 75283, 75491, 77207, 83863, 84383, 85787, 86567
Offset: 1

Views

Author

Zak Seidov, Sep 12 2002

Keywords

Comments

Interprimes of the form s*prime are in A075277-A075296 ( s = 2 - 21 ). Case s=1 is impossible.

Examples

			1313 is an interprime and 1313/13 = 101 is prime.
		

Crossrefs

Programs

  • Mathematica
    s=13; Select[Table[(Prime[n+1]+Prime[n])/2, {n, 2, 4000}], PrimeQ[ #/s]&]
    Select[Mean/@Partition[Prime[Range[2,8500]],2,1],PrimeQ[#/13]&] (* Harvey P. Dale, Apr 29 2012 *)
  • PARI
    first(n) = {my(res = List(), p); forprime(p=2, oo, if(precprime(13*p) + nextprime(13*p) == 26*p, listput(res, 13*p); if(#res>=n, return(res))))} \\ David A. Corneth, Jul 26 2017

A137263 Interprimes (A024675) == 2 (mod 3).

Original entry on oeis.org

26, 50, 56, 86, 134, 170, 176, 236, 254, 260, 266, 356, 386, 446, 473, 506, 515, 560, 566, 590, 596, 650, 656, 680, 803, 944, 950, 974, 980, 1016, 1100, 1106, 1184, 1190, 1220, 1226, 1268, 1286, 1313, 1364, 1370, 1436, 1496, 1505, 1517, 1556, 1604, 1616
Offset: 1

Views

Author

Zak Seidov, Mar 12 2008, Mar 22 2008

Keywords

Comments

In other words, a(n) -/+ d are consecutive primes;
all d's are multiples of 3 and most d's are even;

Examples

			Examples of pairs {a(n),d} with first occurrences of d:
{26,3}, {473,6}, {1268,9}, {4535,12}, {5366,15}, {9569,18}, {38522,21}, {28253,24}, {40316,27}, {43361,30}, {162176,33}, {31433,36}, {370988,39}, {461759,42}, {576836,45}, {360701,48}, {492170,57}.
		

Crossrefs

Cf. A024675.

Programs

  • Mathematica
    Select[Mean/@Partition[Prime[Range[2,300]],2,1],Mod[#,3]==2&] (* Harvey P. Dale, Jun 04 2023 *)

A377381 a(n) is the number of divisors of n that are interprime numbers (A024675).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 3, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 5, 0, 0, 1, 1, 0, 3, 0, 1, 3, 0, 0, 3, 0, 1, 0, 2, 0, 3, 0, 2, 0, 0, 0, 6, 0, 0, 2, 2, 0, 1, 0, 2, 1, 0, 0, 6, 0, 0, 1, 2, 0, 3, 0, 1, 2, 0, 0, 5, 0, 1, 0
Offset: 1

Views

Author

Marius A. Burtea, Dec 05 2024

Keywords

Examples

			Because A024675(1) = 4 it follows that a(1) = a(2) = a(3) = 0 and a(4) = 1.
a(12) = 3 because it has the divisors 4 = A024675(1), 6 = A024675(2) and 12 = A024675(4).
		

Crossrefs

Cf. A024675.

Programs

  • Magma
    ipr:=func ;[#[d:d in Divisors(n)|ipr(d)]:n in [1..100]];
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, CompositeQ[#] && NextPrime[#] + NextPrime[#, -1] == 2*# &]; Array[a, 100] (* Amiram Eldar, Dec 11 2024 *)

A097636 Odd composites of the form A024675(k) or 1+A024675(k), any k.

Original entry on oeis.org

9, 15, 21, 27, 35, 39, 45, 51, 57, 65, 69, 77, 81, 87, 93, 99, 105, 111, 121, 129, 135, 145, 155, 161, 165, 171, 177, 187, 195, 205, 217, 225, 231, 237, 247, 255, 261, 267, 275, 279, 289, 301, 309, 315, 325, 335, 343, 351, 357, 363, 371, 377, 381, 387, 393, 399
Offset: 1

Views

Author

Roger L. Bagula, Sep 20 2004

Keywords

Comments

Start from an auxiliary sequence of interprimes, incremented by 1 if even: 5, 7, 9, 13, 15, 19, 21, 27, 31,... Removing the primes from this auxiliary sequence of odd numbers yields the current sequence.

Programs

  • Mathematica
    digits=200 (* find odd numbers between the primes nearest the average*) a=Table[If[(Mod[(Prime[n+1]+Prime[n])/2, 2]==1)&&( PrimeQ[(Prime[n+1]+Prime[n])/2]==False)&&( PrimeQ[(Prime[n+1]+Prime[n])/2+1]==False), (Prime[n+1]+Prime[n])/2, (Prime[n+1]+Prime[n])/2+1], {n, 2, digits}] b=Table[Prime[n], {n, 1, digits}] (* eliminate the primes from the sequence *) aa=Complement[a, b]

Extensions

Definition clarified by the Assoc. Eds. of the OEIS, Jul 13 2010

A168393 Moebius function of interprimes (A024675).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, -1, -1, 0, 1, 0, 1, 1, -1, 0, 0, -1, 0, -1, -1, 0, 0, -1, 0, -1, 0, 1, 1, 0, 0, -1, 0, 0, -1, 1, 0, -1, 0, 1, 0, -1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 1, 1, 1, -1, 0, 0, 0, -1, 0, 0, 0, 1, 1, 0, 1, -1, 1, -1, 1, 0, 1, -1, 1
Offset: 1

Views

Author

Jani Melik, Nov 24 2009

Keywords

Crossrefs

Cf. A008683.

Programs

  • Maple
    ts_fip:=proc(n) local i,an: an:=[ ]: for i from 2 to n do an:=[ op(an), numtheory[mobius]((ithprime(i)+ithprime(i+1))/2) ]: od: RETURN(an) end: ts_fip(500);

A377382 a(n) is the smallest number k for which exactly n of its divisors are interprime numbers (A024675).

Original entry on oeis.org

1, 4, 52, 12, 162, 36, 60, 120, 240, 300, 180, 600, 360, 1560, 720, 1260, 1440, 1620, 2520, 2880, 3240, 5040, 10920, 6300, 9360, 10080, 12960, 12600, 15840, 20160, 22680, 25200, 31680, 39600, 27720, 59400, 50400, 70560, 56700, 79200, 55440, 65520, 83160, 100800
Offset: 0

Views

Author

Marius A. Burtea, Dec 05 2024

Keywords

Examples

			Because A024675(1) = 4 it follows that a(0) = 1 and a(1) = 4.
a(2) = 52 because 52 has the divisors 4 = A024675(1), 26 = A024675(8) and no number from 1 to 51 has exactly two interprime divisors.
		

Crossrefs

Programs

  • Magma
    ipr:=func; a:=[]; for n in [0..43] do k:=1; while  #[d:d in Divisors(k)|ipr(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a;
  • Mathematica
    d[n_] := DivisorSum[n, 1 &, CompositeQ[#] && NextPrime[#] + NextPrime[#, -1] == 2*# &]; seq[len_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len, i = d[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[44] (* Amiram Eldar, Dec 11 2024 *)

A001043 Numbers that are the sum of 2 successive primes.

Original entry on oeis.org

5, 8, 12, 18, 24, 30, 36, 42, 52, 60, 68, 78, 84, 90, 100, 112, 120, 128, 138, 144, 152, 162, 172, 186, 198, 204, 210, 216, 222, 240, 258, 268, 276, 288, 300, 308, 320, 330, 340, 352, 360, 372, 384, 390, 396, 410, 434, 450, 456, 462, 472, 480, 492, 508, 520
Offset: 1

Views

Author

Keywords

Comments

Arithmetic derivative (see A003415) of prime(n)*prime(n+1). - Giorgio Balzarotti, May 26 2011
A008472(a(n)) = A191583(n). - Reinhard Zumkeller, Jun 28 2011
With the exception of the first term, all terms are even. a(n) is divisible by 4 if the difference between prime(n) and prime(n + 1) is not divisible by 4; e.g., prime(n) = 1 mod 4 and prime(n + 1) = 3 mod 4. In general, for a(n) to be divisible by some even number m > 2 requires that prime(n + 1) - prime(n) not be a multiple of m. - Alonso del Arte, Jan 30 2012

Examples

			2 + 3 = 5.
3 + 5 = 8.
5 + 7 = 12.
7 + 11 = 18.
		

References

  • Archimedeans Problems Drive, Eureka, 26 (1963), 12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A050936.
Cf. A000040 (primes), A031131 (first differences), A092163 (bisection), A100479 (bisection).

Programs

  • Haskell
    a001043 n = a001043_list !! (n-1)
    a001043_list = zipWith (+) a000040_list $ tail a000040_list
    -- Reinhard Zumkeller, Oct 19 2011
  • Magma
    [(NthPrime(n+1) + NthPrime(n)): n in [1..100]]; // Vincenzo Librandi, Apr 02 2011
    
  • Maple
    Primes:= select(isprime,[2,seq(2*i+1,i=1..1000)]):
    n:= nops(Primes):
    Primes[1..n-1] + Primes[2..n]; # Robert Israel, Aug 29 2014
  • Mathematica
    Table[Prime[n] + Prime[n + 1], {n, 55}] (* Ray Chandler, Feb 12 2005 *)
    Total/@Partition[Prime[Range[60]], 2, 1] (* Harvey P. Dale, Aug 23 2011 *)
    Abs[Differences[Table[(-1)^n Prime[n], {n, 60}]]] (* Alonso del Arte, Feb 03 2016 *)
  • PARI
    p=2;forprime(q=3,1e3,print1(p+q", ");p=q) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    is(n)=precprime((n-1)/2)+nextprime(n/2)==n&&n>2 \\ Charles R Greathouse IV, Jun 21 2012
    
  • Sage
    BB = primes_first_n(56)
    L = []
    for i in range(55): L.append(BB[1 + i] + BB[i])
    L # Zerinvary Lajos, May 14 2007
    

Formula

a(n) = prime(n) + prime(n + 1) = A000040(n) + A000040(n+1).
a(n) = A116366(n, n - 1) for n > 1. - Reinhard Zumkeller, Feb 06 2006
a(n) = 2*A024675(n-1), n>1. - R. J. Mathar, Jan 12 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000

A006562 Balanced primes (of order one): primes which are the average of the previous prime and the following prime.

Original entry on oeis.org

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A075540. - Franklin T. Adams-Watters, Jan 11 2006
This subsequence of A125830 and of A162174 gives primes of level (1,1): More generally, the i-th prime p(i) is of level (1,k) if and only if it has level 1 in A117563 and 2 p(i) - p(i+1) = p(i-k). - Rémi Eismann, Feb 15 2007
Note the similarity between plots of A006562 and A013916. - Bill McEachen, Sep 07 2009
Balanced primes U strong primes = good primes. Or, A006562 U A051634 = A046869. - Juri-Stepan Gerasimov, Mar 01 2010
Primes prime(n) such that A001223(n-1) = A001223(n). - Irina Gerasimova, Jul 11 2013
Numbers m such that A346399(m) is odd and >= 3. - Ya-Ping Lu, Dec 26 2021 and May 07 2024
"Balanced" means that the next and preceding gap are of the same size, i.e., the second difference A036263 vanishes; so these are the primes whose indices are 1 more than indices of zeros in A036263, listed in A064113. - M. F. Hasler, Oct 15 2024
Primes which are the average of three consecutive primes. - Peter Schorn, Apr 30 2025

Examples

			5 belongs to the sequence because 5 = (3 + 7)/2. Likewise 53 = (47 + 59)/2.
5 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (3, 5, 7).
53 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (47, 53, 59).
257 and 263 belong to the sequence because they are terms, but not first or last, of the AP of consecutive primes (251, 257, 263, 269).
		

References

  • A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.

Crossrefs

Primes A000040 whose indices are 1 more than A064113, indices of zeros in A036263 (second differences of the primes).
Cf. A225494 (multiplicative closure); complement of A178943 with respect to A000040.
Cf. A055380, A051795, A081415, A096710 for other balanced prime sequences.

Programs

  • Haskell
    a006562 n = a006562_list !! (n-1)
    a006562_list = filter ((== 1) . a010051) a075540_list
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Haskell
    a006562 n = a006562_list !! (n-1)
    a006562_list = h a000040_list where
       h (p:qs@(q:r:ps)) = if 2 * q == (p + r) then q : h qs else h qs
    -- Reinhard Zumkeller, May 09 2013
    
  • Magma
    [a: n in [1..1000] | IsPrime(a) where a is NthPrime(n)-NthPrime(n+1)+NthPrime(n+2)]; // Vincenzo Librandi, Jun 23 2016
    
  • Mathematica
    Transpose[ Select[ Partition[ Prime[ Range[1000]], 3, 1], #[[2]] ==(#[[1]] + #[[3]])/2 &]][[2]]
    p=Prime[Range[1000]]; p[[Flatten[1+Position[Differences[p, 2], 0]]]]
    Prime[#]&/@SequencePosition[Differences[Prime[Range[800]]],{x_,x_}][[All,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 31 2019 *)
  • PARI
    betwixtpr(n) = { local(c1,c2,x,y); for(x=2,n, c1=c2=0; for(y=prime(x-1)+1,prime(x)-1, if(!isprime(y),c1++); ); for(y=prime(x)+1,prime(x+1)-1, if(!isprime(y),c2++); ); if(c1==c2,print1(prime(x)",")) ) } \\ Cino Hilliard, Jan 25 2005
    
  • PARI
    forprime(p=1,999, p-precprime(n-1)==nextprime(p+1)-p && print1(p",")) \\ M. F. Hasler, Jun 01 2013
    
  • PARI
    is(n)=n-precprime(n-1)==nextprime(n+1)-n && isprime(n) \\ Charles R Greathouse IV, Apr 07 2016
    
  • Python
    from sympy import nextprime; p, q, r = 2, 3, 5
    while q < 6000:
        if 2*q == p + r: print(q, end = ", ")
        p, q, r = q, r, nextprime(r) # Ya-Ping Lu, Dec 23 2021

Formula

2*p_n = p_(n-1) + p_(n+1).
Equals { p = prime(k) | A118534(k) = prime(k-1) }. - Rémi Eismann, Nov 30 2009
a(n) = A000040(A064113(n) + 1) = (A122535(n) + A181424(n)) / 2. - Reinhard Zumkeller, Jan 20 2012
a(n) = A122535(n) + A117217(n). - Zak Seidov, Feb 14 2013
Equals A145025 intersect A000040 = A145025 \ A024675. - M. F. Hasler, Jun 01 2013
Conjecture: Limit_{n->oo} n*(log(a(n)))^2 / a(n) = 1/2. - Alain Rocchelli, Mar 21 2024
Conjecture: The asymptotic limit of the average of a(n+1)-a(n) is equivalent to 2*(log(a(n)))^2. Otherwise formulated: 2 * Sum_{n=1..N} (log(a(n)))^2 ~ a(N). - Alain Rocchelli, Mar 23 2024

Extensions

Reworded comment and added formula from R. Eismann. - M. F. Hasler, Nov 30 2009
Edited by Daniel Forgues, Jan 15 2011

A064113 Indices k such that (1/3)*(prime(k)+prime(k+1)+prime(k+2)) is a prime.

Original entry on oeis.org

2, 15, 36, 39, 46, 54, 55, 73, 102, 107, 110, 118, 129, 160, 164, 184, 187, 194, 199, 218, 239, 271, 272, 291, 339, 358, 387, 419, 426, 464, 465, 508, 520, 553, 599, 605, 621, 629, 633, 667, 682, 683, 702, 709, 710, 733, 761, 791, 813, 821, 822, 829, 830
Offset: 1

Views

Author

Jason Earls, Sep 08 2001

Keywords

Comments

n such that d(n) = d(n+1), where d(n) = prime(n+1) - prime(n) = A001223(n).
Of interest because when I generalize it to d(n) = d(n+2), d(n) = d(n+3), etc. I am unable to find any positive number k such that d(n) = d(n+k) has no solution.
From Lei Zhou, Dec 06 2005: (Start)
When (1/3)*(prime(k) + prime(k+1) + prime(k+2)) is prime, then it is equal to prime(k+1).
Also, indices k such that (prime(k)+prime(k+2))/2 = prime(k+1).
The Mathematica program is based on the alternative definition. (End)
Inflection and undulation points of the primes, i.e., positions of zeros in A036263, the second differences of the primes. - Gus Wiseman, Mar 24 2020

Examples

			a(2) = 15 because (p(15)+p(16)+p(17)) = 1/3(47 + 53 + 59) = 53 (prime average of three successive primes).
Splitting the prime gaps into anti-runs gives: (1,2), (2,4,2,4,2,4,6,2,6,4,2,4,6), (6,2,6,4,2,6,4,6,8,4,2,4,2,4,14,4,6,2,10,2,6), (6,4,6), ... Then a(n) is the n-th partial sum of the lengths of these anti-runs. - _Gus Wiseman_, Mar 24 2020
		

Crossrefs

Indices of zeros in A036263 (second differences of primes).
Indices (A000720 = primepi) of balanced primes A006562, minus 1.
Cf. A262138.
Complement of A333214.
First differences are A333216.
The version for strict ascents is A258025.
The version for strict descents is A258026.
The version for weak ascents is A333230.
The version for weak descents is A333231.
A triangle for anti-runs of compositions is A106356.
Lengths of maximal runs of prime gaps are A333254.
Anti-runs of compositions in standard order are A333381.

Programs

  • Haskell
    import Data.List (elemIndices)
    a064113 n = a064113_list !! (n-1)
    a064113_list = map (+ 1) $ elemIndices 0 a036263_list
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Mathematica
    ct = 0; Do[If[(Prime[k] + Prime[k + 2] - 2*Prime[k + 1]) == 0, ct++; n[ct] = k], {k, 1, 2000}]; Table[n[k], {k, 1, ct}] (* Lei Zhou, Dec 06 2005 *)
    Join@@Position[Differences[Array[Prime,100],2],0] (* Gus Wiseman, Mar 24 2020 *)
  • PARI
    d(n) = prime(n+1)-prime(n); j=[]; for(n=1,1500, if(d(n)==d(n+1), j=concat(j,n))); j
    
  • PARI
    { n=0; for (m=1, 10^9, if (d(m)==d(m+1), write("b064113.txt", n++, " ", m); if (n==1000, break)) ) } \\ Using d(n) above. - Harry J. Smith, Sep 07 2009
    
  • PARI
    [n | n<-[1..888], !A036263(n)] \\ M. F. Hasler, Oct 15 2024
    
  • PARI
    \\ More efficient for larges range of n:
    A064113_upto(N, n=1, L=List(), q=prime(n+1), d=q-prime(n))={forprime(p=1+q,, if(d==d=p-q, listput(L,n); #LM. F. Hasler, Oct 15 2024
    
  • Python
    from itertools import count, islice
    from sympy import prime, nextprime
    def A064113_gen(startvalue=1): # generator of terms >= startvalue
        c = max(startvalue,1)
        p = prime(c)
        q = nextprime(p)
        r = nextprime(q)
        for k in count(c):
            if p+r==(q<<1):
                yield k
            p, q, r = q, r, nextprime(r)
    A064113_list = list(islice(A064113_gen(),20)) # Chai Wah Wu, Feb 27 2024

Formula

A036263(a(n)) = 0; A122535(n) = A000040(a(n)); A006562(n) = A000040(a(n) + 1); A181424(n) = A000040(a(n) + 2). - Reinhard Zumkeller, Jan 20 2012
A262138(2*a(n)) = 0. - Reinhard Zumkeller, Sep 12 2015
a(n) = A000720(A006562(n)) - 1, where A000720 = (prime)pi, A006562 = balanced primes. - M. F. Hasler, Oct 15 2024

A028334 Differences between consecutive odd primes, divided by 2.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 3, 1, 3, 2, 1, 3, 2, 3, 4, 2, 1, 2, 1, 2, 7, 2, 3, 1, 5, 1, 3, 3, 2, 3, 3, 1, 5, 1, 2, 1, 6, 6, 2, 1, 2, 3, 1, 5, 3, 3, 3, 1, 3, 2, 1, 5, 7, 2, 1, 2, 7, 3, 5, 1, 2, 3, 4, 3, 3, 2, 3, 4, 2, 4, 5, 1, 5, 1, 3, 2, 3, 4, 2, 1, 2, 6, 4, 2, 4, 2, 3, 6, 1, 9, 3, 5, 3, 3, 1, 3
Offset: 2

Views

Author

Keywords

Comments

With an initial zero, gives the numbers of even numbers between two successive primes. - Giovanni Teofilatto, Nov 04 2005
Equal to difference between terms in A067076. - Eric Desbiaux, Aug 07 2010
The twin prime conjecture is that a(n) = 1 infinitely often. Yitang Zhang has proved that a(n) < 3.5 x 10^7 infinitely often. - Jonathan Sondow, May 17 2013
a(n) = 1 if, and only if, n + 1 is in A107770. - Jason Kimberley, Nov 13 2015

Examples

			23 - 19 = 4, so a(8) = 4/2 = 2.
29 - 23 = 6, so a(9) = 6/2 = 3.
31 - 29 = 2, so a(10) = 2/2 = 1.
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Cf. A005521.
Cf. A000230 (least prime with a gap of 2n to the next prime).
Sequences related to the differences between successive primes: A001223 (Delta(p)), A028334, A080378, A104120, A330556 - A330561.

Programs

Formula

a(n) = A001223(n)/2 for n > 1.
a(n) = (prime(n+1) - prime(n)) / 2, where prime(n) is the n-th prime.
a(n) = A047160(A024675(n-1)). - Jason Kimberley, Nov 12 2015
G.f.: (b(x)/((x + 1)/((1 - x)) - 1) - 1 - x/2)/x, where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 10 2016

Extensions

Replaced multiplication by division in the cross-reference R. J. Mathar, Jan 23 2010
Definition corrected by Jonathan Sondow, May 17 2013
Edited by Franklin T. Adams-Watters, Aug 07 2014
Previous Showing 11-20 of 101 results. Next