A022265
a(n) = n*(7*n + 1)/2.
Original entry on oeis.org
0, 4, 15, 33, 58, 90, 129, 175, 228, 288, 355, 429, 510, 598, 693, 795, 904, 1020, 1143, 1273, 1410, 1554, 1705, 1863, 2028, 2200, 2379, 2565, 2758, 2958, 3165, 3379, 3600, 3828, 4063, 4305, 4554, 4810
Offset: 0
From _Bruno Berselli_, Oct 27 2017: (Start)
After 0:
4 = -(1) + (2 + 3).
15 = -(1 + 2) + (3 + 4 + 5 + 6).
33 = -(1 + 2 + 3) + (4 + 5 + 6 + 7 + 8 + 9).
58 = -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + 9 + 10 + 11 + 12). (End)
Cf. similar sequences listed in
A022289.
-
seq(binomial(7*n+1,2)/7, n=0..37); # Zerinvary Lajos, Jan 21 2007
seq(binomial(6*n+1,2)/3-binomial(5*n+1,2)/5, n=0..42); # Zerinvary Lajos, Jan 21 2007
-
Table[n (7 n + 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 13 2016 *)
LinearRecurrence[{3,-3,1},{0,4,15},40] (* Harvey P. Dale, Oct 09 2018 *)
-
a(n)=n*(7*n+1)/2 \\ Charles R Greathouse IV, Oct 07 2015
A195145
Concentric 14-gonal numbers.
Original entry on oeis.org
0, 1, 14, 29, 56, 85, 126, 169, 224, 281, 350, 421, 504, 589, 686, 785, 896, 1009, 1134, 1261, 1400, 1541, 1694, 1849, 2016, 2185, 2366, 2549, 2744, 2941, 3150, 3361, 3584, 3809, 4046, 4285, 4536, 4789, 5054, 5321, 5600, 5881, 6174, 6469, 6776, 7085, 7406
Offset: 0
Cf.
A024966,
A032527,
A032528,
A077221,
A113801,
A195045,
A195046,
A195142,
A195143,
A195146,
A195147,
A195148,
A195149.
-
a195145 n = a195145_list !! n
a195145_list = scanl (+) 0 a113801_list
-- Reinhard Zumkeller, Jan 07 2012
-
[(14*n^2+5*(-1)^n-5)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
-
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 14, 29}, 50] (* Amiram Eldar, Jan 16 2023 *)
A193053
a(n) = (14*n*(n+3) + (2*n-5)*(-1)^n + 21)/16.
Original entry on oeis.org
1, 5, 10, 17, 26, 36, 49, 62, 79, 95, 116, 135, 160, 182, 211, 236, 269, 297, 334, 365, 406, 440, 485, 522, 571, 611, 664, 707, 764, 810, 871, 920, 985, 1037, 1106, 1161, 1234, 1292, 1369, 1430, 1511, 1575, 1660, 1727, 1816, 1886, 1979, 2052, 2149, 2225, 2326
Offset: 0
Cf.
A195020 (vertices of the numerical spiral in link).
Cf.
A001106,
A022264,
A033572,
A144555,
A152760,
A158482,
A158485,
A185019,
A195021,
A195023-
A195030,
A195320,
A198017 [incomplete list].
-
[(14*n*(n+3)+(2*n-5)*(-1)^n+21)/16: n in [0..50]];
-
Table[(14*n*(n + 3) + (2*n - 5)*(-1)^n + 21)/16, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
LinearRecurrence[{1,2,-2,-1,1},{1,5,10,17,26},60] (* Harvey P. Dale, Jun 19 2020 *)
-
for(n=0, 50, print1((14*n*(n+3)+(2*n-5)*(-1)^n+21)/16", "));
A195320
7 times hexagonal numbers: a(n) = 7*n*(2*n-1).
Original entry on oeis.org
0, 7, 42, 105, 196, 315, 462, 637, 840, 1071, 1330, 1617, 1932, 2275, 2646, 3045, 3472, 3927, 4410, 4921, 5460, 6027, 6622, 7245, 7896, 8575, 9282, 10017, 10780, 11571, 12390, 13237, 14112, 15015, 15946, 16905, 17892, 18907, 19950, 21021, 22120, 23247, 24402, 25585
Offset: 0
A218471
a(n) = n*(7*n-3)/2.
Original entry on oeis.org
0, 2, 11, 27, 50, 80, 117, 161, 212, 270, 335, 407, 486, 572, 665, 765, 872, 986, 1107, 1235, 1370, 1512, 1661, 1817, 1980, 2150, 2327, 2511, 2702, 2900, 3105, 3317, 3536, 3762, 3995, 4235, 4482, 4736, 4997, 5265, 5540, 5822, 6111, 6407, 6710, 7020, 7337
Offset: 0
Cf. numbers of the form n*(n*k-k+4)/2 listed in
A226488 (this sequence is the case k=7). -
Bruno Berselli, Jun 10 2013
-
List([0..50], n-> n*(7*n-3)/2); # G. C. Greubel, Aug 31 2019
-
[n*(7*n-3)/2: n in [0..50]]; // G. C. Greubel, Aug 31 2019
-
seq(n*(7*n-3)/2, n=0..50); # G. C. Greubel, Aug 31 2019
-
Table[n*(7*n-3)/2, {n,0,50}] (* G. C. Greubel, Aug 23 2017 *)
-
a(n)=n*(7*n-3)/2 \\ Charles R Greathouse IV, Jun 17 2017
-
[n*(7*n-3)/2 for n in (0..50)] # G. C. Greubel, Aug 31 2019
A163756
14 times triangular numbers.
Original entry on oeis.org
0, 14, 42, 84, 140, 210, 294, 392, 504, 630, 770, 924, 1092, 1274, 1470, 1680, 1904, 2142, 2394, 2660, 2940, 3234, 3542, 3864, 4200, 4550, 4914, 5292, 5684, 6090, 6510, 6944, 7392, 7854, 8330, 8820, 9324, 9842, 10374, 10920, 11480, 12054, 12642, 13244, 13860
Offset: 0
Cf.
A274978 (generalized 16-gonal numbers).
-
Table[7*n*(n-1),{n,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
14*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,14,42},50] (* Harvey P. Dale, May 11 2021 *)
-
a(n)=7*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017
A101447
Triangle read by rows: T(n,k) = (2*k+1)*(n+1-k), 0 <= k < n.
Original entry on oeis.org
1, 2, 3, 3, 6, 5, 4, 9, 10, 7, 5, 12, 15, 14, 9, 6, 15, 20, 21, 18, 11, 7, 18, 25, 28, 27, 22, 13, 8, 21, 30, 35, 36, 33, 26, 15, 9, 24, 35, 42, 45, 44, 39, 30, 17, 10, 27, 40, 49, 54, 55, 52, 45, 34, 19, 11, 30, 45, 56, 63, 66, 65, 60, 51, 38, 21, 12, 33, 50, 63, 72, 77, 78, 75, 68, 57, 42, 23
Offset: 0
From _Bruno Berselli_, Feb 10 2014: (Start)
Triangle begins:
1;
2, 3;
3, 6, 5;
4, 9, 10, 7;
5, 12, 15, 14, 9;
6, 15, 20, 21, 18, 11;
7, 18, 25, 28, 27, 22, 13;
8, 21, 30, 35, 36, 33, 26, 15;
9, 24, 35, 42, 45, 44, 39, 30, 17;
10, 27, 40, 49, 54, 55, 52, 45, 34, 19;
11, 30, 45, 56, 63, 66, 65, 60, 51, 38, 21;
etc.
(End)
-
t[n_, k_] := If[n < k, 0, (2*k + 1)*(n - k + 1)]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 20 2005 *)
-
T(n,k)=if(n
A124110
Primes of the form A124080 (10 times triangular numbers) +- 1.
Original entry on oeis.org
11, 29, 31, 59, 61, 101, 149, 151, 211, 281, 359, 449, 659, 661, 911, 1049, 1051, 1201, 1361, 1531, 1709, 1901, 2099, 2309, 2311, 2531, 2999, 3001, 3251, 3511, 3779, 4349, 4649, 4651, 5279, 5281, 6299, 6301, 6659, 6661, 7411, 8609, 9029, 9461, 9901, 11279
Offset: 1
a(1) = A124080(1)+1 = (10*T(1)) - 1 = 10*(1*(1+1)/2) + 1 = 10+1 = 11 is prime.
a(2) = A124080(2)-1 = (10*T(2))-1 = 10*(2*(2+1)/2) - 1 = 30-1 = 29 is prime.
a(3) = A124080(2)+1 = (10*T(2))+1 = 10*(2*(2+1)/2) + 1 = 30+1 = 31 is prime.
-
s = {}; Do[t = 5n(n + 1); If[PrimeQ[t - 1], AppendTo[s, t - 1]]; If[PrimeQ[t + 1], AppendTo[s, t + 1]], {n, 47}]; s (* Robert G. Wilson v *)
A168622
Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 21, 21, 1;
1, 28, 42, 28, 1;
1, 35, 70, 70, 35, 1;
1, 42, 105, 140, 105, 42, 1;
1, 49, 147, 245, 245, 147, 49, 1;
1, 56, 196, 392, 490, 392, 196, 56, 1;
1, 63, 252, 588, 882, 882, 588, 252, 63, 1;
1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
-
A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >;
[A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
-
(* First program *)
p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten
(* Second program *)
A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]];
Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
-
def A168622(n,k):
if k==0 or k==n: return 1
else: return 7*binomial(n,k)
print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025
A329530
a(n) = n * (7*binomial(n, 2) + 1).
Original entry on oeis.org
0, 1, 16, 66, 172, 355, 636, 1036, 1576, 2277, 3160, 4246, 5556, 7111, 8932, 11040, 13456, 16201, 19296, 22762, 26620, 30891, 35596, 40756, 46392, 52525, 59176, 66366, 74116, 82447, 91380, 100936, 111136, 122001, 133552, 145810, 158796, 172531, 187036, 202332, 218440
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 144.
-
Table[n (7 Binomial[n, 2] + 1), {n, 0, 40}]
nmax = 40; CoefficientList[Series[x (1 + 12 x + 8 x^2)/(1 - x)^4, {x, 0, nmax}], x]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 16, 66}, 41]
Comments