cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A025547 Least common multiple of {1,3,5,...,2n-1}.

Original entry on oeis.org

1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675
Offset: 1

Views

Author

Keywords

Comments

This sequence coincides with the sequence f(n) = denominator of 1 + 1/3 + 1/5 + 1/7 + ... + 1/(2n-1) iff n <= 38. But a(39) = 6414924694381721303722858446525, f(39) = 583174972216520118520259858775. - T. D. Noe, Aug 04 2004 [See A350670(n-1).]
Coincides for n=1..42 with the denominators of a series for Pi*sqrt(2)/4 and then starts to differ. See A127676.
a(floor((n+1)/2)) = gcd(a(n), A051426(n)). - Reinhard Zumkeller, Apr 25 2011
A051417(n) = a(n+1)/a(n).

Crossrefs

Cf. A007509, A025550, A075135. The numerators are in A074599.
Cf. A003418 (LCM of {1..n}).

Programs

  • Haskell
    a025547 n = a025547_list !! (n-1)
    a025547_list = scanl1 lcm a005408_list
    -- Reinhard Zumkeller, Oct 25 2013, Apr 25 2011
    
  • Maple
    A025547:=proc(n) local i,t1; t1:=1; for i from 1 to n do t1:=lcm(t1,2*i-1); od: t1; end;
    f := n->denom(add(1/(2*k-1),k=0..n)); # a different sequence!
  • Mathematica
    a = 1; Join[{1}, Table[a = LCM[a, n], {n, 3, 125, 2}]] (* Zak Seidov, Jan 18 2011 *)
    nn=30;With[{c=Range[1,2*nn,2]},Table[LCM@@Take[c,n],{n,nn}]] (* Harvey P. Dale, Jan 27 2013 *)
  • PARI
    a(n)=lcm(vector(n,k,2*k-1)) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return list(accumulate((2*i+1 for i in range(nn)), lcm))
    print(aupton(23)) # Michael S. Branicky, Mar 28 2022

A075135 Numerator of the generalized harmonic number H(n,3,1) described below.

Original entry on oeis.org

1, 5, 39, 209, 2857, 11883, 233057, 2632787, 13468239, 13739939, 433545709, 7488194853, 281072414761, 284780929571, 12393920563953, 288249495707519, 2038704876507433, 2058454144222533, 2077126179153173, 60750140156034617
Offset: 1

Views

Author

T. D. Noe, Sep 04 2002

Keywords

Comments

For integers a and b, H(n,a,b) is the sum of the fractions 1/(a i + b), i = 0,1,..,n-1. This database already contains six instances of generalized harmonic numbers. Partial sums of the harmonic series 1+1/2+1/3+1/4+... are given by the sequence of harmonic numbers H(n,1,1) = A001008(n) / A002805(n).
The Jeep problem gives rise to the series H(n,2,1) = A025550(n) / A025547(n). Recent additions to the database are 3 * H(n,3,1) = A074596(n) / A051536(n), 3 * H(n,3,2) = A074597(n) / A051540(n), 4 * H(n,4,1) = A074598(n) / A051539(n) and 4 * H(n,4,3) = A074637(n) / A074638(n) . The numerator of H(n,4,1) is A075136. The fractions H(n,5,1), H(n,5,2), H(n,5,3) and H(n,5,4) are in A075137-A075144.
The sequence H(n,a,b) is of interest only when a and b are relatively prime. The sequence can also be computed as H(n,a,b) = (PolyGamma[n+1+b/a] - PolyGamma[1+b/a])/a. The sequence H(n,a,b) diverges for all a and b.
According to Hardy and Wright, if p is an odd prime, then p divides the numerator of the harmonic number H(p-1,1,1). This result can be extended to generalized harmonic numbers: for odd integer n, let q = (n-2)a + 2b. If q is prime, then q divides the numerator of H(n-1,a,b). For this sequence (a=3, b=1) we conclude that 11 divides a(4), 17 divides a(6), 29 divides a(10) and 47 divides a(16).
Graham, Knuth and Patashnik define another type of generalized harmonic number as the sum of fractions 1/i^k, i=1,...,n. For k=2, the sequence of fractions is A007406(n) / A007407(n).

Examples

			a(3)=39 because 1 + 1/4 + 1/7 = 39/28.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 263, 269, 272, 297, 302, 356.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 88.

Crossrefs

Programs

  • Mathematica
    a=3; b=1; maxN=20; s=0; Numerator[Table[s+=1/(a n + b), {n, 0, maxN-1}]]
    Accumulate[1/Range[1,60,3]]//Numerator (* Harvey P. Dale, Dec 30 2019 *)

A120268 Numerator of Sum_{k=1..n} 1/(2*k-1)^2.

Original entry on oeis.org

1, 10, 259, 12916, 117469, 14312974, 2430898831, 487983368, 141433003757, 51174593563322, 51270597630767, 27164483940418988, 3400039831130408821, 30634921277843705014, 25789165074168004597399
Offset: 1

Views

Author

Alexander Adamchuk, Jul 01 2006

Keywords

Comments

a((p-1)/2) is divisible by prime p > 3.
The limit of the rationals r(n) = Sum_{k=1..n} 1/(2*k-1)^2, for n -> infinity, is (Pi^2)/8 = (1 - 1/2^2)*Zeta(2), which is approximately 1.233700550.
r(n) = (Psi(1, 1/2) - Psi(1, n+1/2))/4 for n >= 1, where Psi(n,k) = Polygamma(n,k) is the n-th derivative of the digamma function. Psi(1, 1/2) = 3*Zeta(2) = Pi^2/2. - Jean-François Alcover, Dec 02 2013 [Corrected by Petros Hadjicostas, May 09 2020]

Examples

			Fractions begin: 1, 10/9, 259/225, 12916/11025, 117469/99225, 14312974/12006225, 2430898831/2029052025, 487983368/405810405, ... = A120268/A128492.
		

Crossrefs

Cf. A007406, A025550, A128492 (denominators).

Programs

  • Magma
    [Numerator((&+[1/(2*k-1)^2: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Mathematica
    Numerator[Table[Sum[1/(2k-1)^2,{k,1,n}],{n,1,25}]]
    Table[(PolyGamma[1, 1/2] - PolyGamma[1, n+1/2])/4 // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
    Accumulate[1/(2*Range[20]-1)^2]//Numerator (* Harvey P. Dale, Jun 14 2020 *)
  • PARI
    for(n=1,20, print1(numerator(sum(k=1,n, 1/(2*k-1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator( Pi^2/2 - Zeta(2,(2n+1)/2) ) / 4 for n > 0. - Artur Jasinski, Mar 03 2010 [corrected by Bruno Berselli, Dec 02 2013]

A355565 T(j,k) are the numerators s in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows.

Original entry on oeis.org

0, 1, 0, 2, -1, 0, 17, -4, 1, 0, 40, -49, 6, -1, 0, 401, -140, 97, -8, 1, 0, 1042, -1569, 336, -161, 10, -1, 0, 11073, -4376, 4321, -660, 241, -12, 1, 0, 29856, -48833, 13342, -9681, 1144, -337, 14, -1, 0, 325441, -136488, 160929, -33188, 18929, -1820, 449, -16, 1, 0
Offset: 0

Views

Author

Hugo Pfoertner, Jul 07 2022

Keywords

Comments

The recurrence given by Cserti (2000), page 5, (32) is used to calculate the resistance between two arbitrarily spaced nodes in an infinite square lattice whose edges are replaced by one-ohm resistors. The lower triangle, including the diagonal, in Table I of Atkinson and Steenwijk (1999), page 487, is reproduced. The solution to the resistor grid problem shown in the xkcd Web Comic #356 "Nerd Sniping", provided in A211074, is the special case (j,k) = (2,1).
Using the terms of A280079 and A280317 as pairs of grid indices leads to strictly increasing resistances, i.e., R(A280079(m),A280317(m)) > R(A280079(i),A280317(i)) for m > i. This implies that for grid points on the same radius the resistance increases with the circumferential angle between 0 and Pi/4. The further dependence of the resistance along the circumferential angle with a fixed radius results from symmetry. - Hugo Pfoertner, Aug 31 2022

Examples

			The triangle begins:
     0;
     1,     0;
     2,    -1,   0;
    17,    -4,   1,    0;
    40,   -49,   6,   -1,  0;
   401,  -140,  97,   -8,  1,  0;
  1042, -1569, 336, -161, 10, -1, 0
.
The combined triangles used to calculate the resistances are:
  \  k      0       |        1        |       2       |      3       |
   \    s/t     u/v |    s/t    u/v   |  s/t      u/v |  s/t    u/v  |
  j \---------------|-----------------|---------------|--------------|
  0 |   0       0   |     .      .    |   .        .  |   .      .   |
  1 |   1/2     0   |    0      1     |   .        .  |   .      .   |
  2 |   2      -2   |   -1/2    2     |  0        4/3 |   .      .   |
  3 |  17/2   -12   |   -4     23/3   |  1/2      2/3 |  0     23/15 |
  4 |  40    -184/3 | - 49/2   40     |  6    -118/15 | -1/2   12/5  |
  5 | 401/2  -940/3 | -140    3323/15 | 97/2 -1118/15 | -8    499/35 |
.
continued:
  \ k     4       |      5       |
   \  s/t   u/v   | s/t    u/v   |
  j \-------------|--------------|
  0 |  .     .    |  .      .    |
  1 |  .     .    |  .      .    |
  2 |  .     .    |  .      .    |
  3 |  .     .    |  .      .    |
  4 | 0   176/105 |  .      .    |
  5 | 1/2  20/21  | 0    563/315 |
.
E.g., the resistance for a node distance vector (4,1) is R = T(4,1)/A131406(5,2) + (2/Pi)*A355566(4,1)/A355567(4,1) = -49/2 + (2/Pi)*40/1 = 80/Pi - 49/2.
		

References

  • See A211074 for more references and links.

Crossrefs

A131406 are the corresponding denominators t, with indices shifted by 1.
A355566 and A355567 are u and v.
Cf. A355585, A355586, A355587, A355588 (same problem for the infinite triangular lattice).

Programs

  • Maple
    See link.
  • Mathematica
    alphas[beta_] :=
    Log[2 - Cos[beta] + Sqrt[3 + Cos[beta]*(Cos[beta] - 4)]];
    Rsqu[n_, p_] :=
    Simplify[(1/Pi)*
       Integrate[(1 - Exp[-Abs[n]*alphas[beta]]*Cos[p*beta])/
         Sinh[alphas[beta]], {beta, 0, Pi}]];
    Table[Rsqu[n, k], {n, 0, 4}, {k, 0, n}] // TableForm (* Hugo Pfoertner, Aug 21 2022, calculates R, after Atkinson and Steenwijk *)
  • PARI
    R(m,p,x=pi) = {if (m==0 && p==0, return(0)); if (m==1 && p==0, return(1/2)); if (m==1 && p==1, return(2/x)); if(m==p, my(mm=m-1); return(R(mm,mm)*4*mm/(2*mm+1) - R(mm-1,mm-1)*(2*mm-1)/(2*mm+1))); if (p==(m-1), my(mm=m-1); return(2*R(mm,mm) - R(mm,mm-1))); if (p==0, my(mm=m-1); return(4*R(mm,0) - R(mm-1,0) - 2*R(mm,1))); if (p0, my(mm=m-1); return(4*R(mm,p) - R(mm-1,p) - R(mm,p+1) - R(mm,p-1)))};
    for(j=0,9,for(k=0,j,my(q=pi*R(j,k,pi));print1(numerator(polcoef(q,1,pi)),", "));print())

Formula

The resistance for the distance vector (j,k) is R(j,k) = T(j,k)/(1+mod(j+k,2)) +(2/Pi)*A355566(j,k)/A355567(j,k), avoiding the use of A131406.
From Rainer Rosenthal, Aug 04 2022: (Start)
R(0,0) = 0; R(1,0) = 1/2.
R(n,n) = R(n-1,n-1) + (2/Pi)/(2*n-1) for n >= 1.
R(j,k) = R(k,j) and R(-j,k) = R(j,k).
4*R(j,k) = R(j-1,k) + R(j+1,k) + R(j,k-1) + R(j,k+1) for (j,k) != (0,0).
(End)
T(j+1,0) = A089165(j)/(1 + mod(j,2)) for j >= 0. - Hugo Pfoertner, Aug 21 2022

A074599 Numerator of 2 * H(n,2,1), a generalized harmonic number. See A075135. Also 2 * A350669.

Original entry on oeis.org

2, 8, 46, 352, 1126, 13016, 176138, 182144, 3186538, 62075752, 63461422, 1488711776, 7577414602, 23104065256, 680057071574, 21372905414144, 21646396991594, 21904260478904, 819482859775298, 828045249930848
Offset: 1

Views

Author

Robert G. Wilson v, Aug 27 2002

Keywords

Comments

2*(1 + 1/3 + ... + 1/(2*n-1))/Pi = a(n)/(A350670(n)*Pi) is the equivalent resistance between the points (0,0) and (n,n) on a 2-dimension infinite square grid of unit resistors. - Jianing Song, Apr 28 2025

Crossrefs

Cf. A350669. The denominators are in A350670.
Not always equal to the second left hand column of A161198 triangle divided by A025549. - Johannes W. Meijer, Jun 08 2009

Programs

  • Mathematica
    Table[ Numerator[ Sum[1/i, {i, 1/2, n}]], {n, 1, 20}]

A002428 Numerators of coefficients of expansion of arctan(x)^2 = x^2 - 2/3*x^4 + 23/45*x^6 - 44/105*x^8 + 563/1575*x^10 - 3254/10395*x^12 + ...

Original entry on oeis.org

0, 1, -2, 23, -44, 563, -3254, 88069, -11384, 1593269, -15518938, 31730711, -186088972, 3788707301, -5776016314, 340028535787, -667903294192, 10823198495797, -5476065119726, 409741429887649, -103505656241356, 17141894231615609
Offset: 1

Views

Author

Keywords

Comments

|a(n)| = numerator of Sum_{k=1..n} 1/(n*(2*k-1)).
Let f(x) = (1/2)*log((1+sqrt(x))/(1-sqrt(x))) and c(n) = Integral_{x=0..1} f(x)*x^(n-1) dx, then for n>=1, c(n) = |a(n+1)|/A071968(n) and (f(x))^2 = Sum_{n>=1} c(n)*x^n. - Groux Roland, Dec 14 2010

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 89.
  • H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 313.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([1..30], n-> NumeratorRat( (-1)^n*Sum([1..n-1], k-> 1/((n-1)*(2*k-1))) )) # G. C. Greubel, Jul 03 2019
  • Magma
    [0] cat [Numerator((-1)^n*(&+[1/((n-1)*(2*k-1)): k in [1..n-1]])): n in [2..30]]; // G. C. Greubel, Jul 03 2019
    
  • Mathematica
    a[n_]:= (-1)^n*Sum[1/((n-1)*(2*k-1)), {k,1,n-1}]//Numerator; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 04 2013 *)
    a[n_]:= SeriesCoefficient[ArcTan[x]^2, {x, 0, 2*n-2}]//Numerator; Table[a[n], {n, 1, 30}] (* G. C. Greubel, Jul 03 2019 *)
  • PARI
    vector(30, n, numerator((-1)^n*sum(k=1,n-1,1/((n-1)*(2*k-1))))) /* corrected by G. C. Greubel, Jul 03 2019 */
    
  • Sage
    [numerator((-1)^n*sum(1/((n-1)*(2*k-1)) for k in (1..n-1))) for n in (1..30)] # G. C. Greubel, Jul 03 2019
    

Formula

a(n) = numerator of (-1)^n * Sum_{k=1..n-1} 1/((n-1)*(2*k-1)), for n>=1. - G. C. Greubel, Jul 03 2019

Extensions

More terms from Jason Earls, Apr 09 2002
Additional comments from Benoit Cloitre, Apr 06 2002

A350669 Numerators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.

Original entry on oeis.org

1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427, 35567319917031991744, 250947670863258378883, 252846595191840484708, 13497714685925233086599
Offset: 0

Views

Author

Wolfdieter Lang, Mar 16 2022

Keywords

Comments

For the denominators see A350670.
This sequence coincides with A025550(n+1), for n = 0, 1, ..., 37. See the comments there.
Thanks to Ralf Steiner for sending me a paper where this and similar sums appear.

Crossrefs

Cf. A001620, A025547, A025550, A111877 (denominators), A350670.

Programs

  • Magma
    [Numerator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1)))/2: n in [0..40]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    With[{H=HarmonicNumber}, Table[Numerator[2*H[2*n+2] -H[n+1]]/2 , {n,0,50}]] (* G. C. Greubel, Jul 24 2023 *)
  • PARI
    a(n) = numerator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
    
  • SageMath
    [numerator(2*harmonic_number(2*n+2,1) - harmonic_number(n+1,1))/2 for n in range(41)] # G. C. Greubel, Jul 24 2023

Formula

a(n) = numerator((Psi(n+3/2) + gamma + 2*log(2))/2), with the Digamma function Psi(z), and the Euler-Mascheroni constant gamma = A001620. See Abramowitz-Stegun, p. 258. 6.3.4.
a(n) = (1/2) * numerator of ( 2*H_{2*n+2} - H_{n+1} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023

A350670 Denominators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.

Original entry on oeis.org

1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725, 96845140757687397075, 96845140757687397075, 5132792460157432044975
Offset: 0

Views

Author

Wolfdieter Lang, Mar 16 2022

Keywords

Comments

For the numerators see A350669.
This sequence coincides with A025547(n+1), for n = 0, 1, ..., 37. See the comments there.
Thanks to Ralf Steiner for sending me a paper where this and similar sums appear.

Crossrefs

Cf. A001620, A025547, A025550, A350669 (numerators).

Programs

  • Magma
    [Denominator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1))): n in [0..40]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    With[{H=HarmonicNumber}, Table[Denominator[2*H[2n+2] -H[n+1]], {n,0,50}]] (* G. C. Greubel, Jul 24 2023 *)
  • PARI
    a(n) = denominator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
    
  • SageMath
    [denominator(2*harmonic_number(2*n+2,1) - harmonic_number(n+1,1)) for n in range(41)] # G. C. Greubel, Jul 24 2023

Formula

a(n) = denominator((Psi(n+3/2) + gamma + 2*log(2))/2), with the Digamma function Psi(z), and the Euler-Mascheroni constant gamma = A001620. See Abramowitz-Stegun, p. 258, 6.3.4.
a(n) = denominator of ( 2*H_{2*n+2} - H_{n+1} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023

A120269 Numerator of Sum_{k=1..n} 1/(2k-1)^4.

Original entry on oeis.org

1, 82, 51331, 123296356, 9988505461, 146251554055126, 4177234784807204311, 4177316109293528392, 348897735816424941428857, 45469045689642442391390873722, 45469276109166591994111574347
Offset: 1

Views

Author

Alexander Adamchuk, Jul 01 2006

Keywords

Comments

a((p-1)/2) is divisible by prime p > 5.
Denominators are in A128493.
The limit of the rationals r(n) = Sum_{k=1..n} 1/(2k-1)^4, for n -> infinity, is (Pi^4)/96 = (1 - 1/2^4)*zeta(4), which is approximately 1.014678032.
r(n) = (Psi(3, 1/2) - Psi(3, n+1/2))/(3!*2^4) for n >= 1, where Psi(n,k) = Polygamma(n,k) is the n^th derivative of the digamma function. Psi(3, 1/2) = 3!*15*zeta(4) = Pi^4. - Jean-François Alcover, Dec 02 2013

Crossrefs

Programs

  • Magma
    [Numerator((&+[1/(2*k-1)^4: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Mathematica
    Numerator[Table[Sum[1/(2k-1)^4,{k,1,n}],{n,1,20}]]
    Table[(PolyGamma[3, 1/2] - PolyGamma[3, n + 1/2])/(3!*2^4) // Simplify // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
  • PARI
    for(n=1,20, print1(numerator(sum(k=1,n, 1/(2*k-1)^4)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

A164655 Numerators of partial sums of Theta(3) = Sum_{j>=1} 1/(2*j-1)^3.

Original entry on oeis.org

1, 28, 3527, 1213136, 32797547, 43684790932, 96017087247229, 96044168328256, 471956397645187853, 3237597973008257555852, 462561506842656976961, 5628425850334528955928112, 703596058798919360293439483, 18998011529681231695738912916, 463360571051954739540899597748949
Offset: 1

Views

Author

Wolfdieter Lang, Oct 16 2009

Keywords

Comments

Warning: Usually, Theta3(x) = Sum_{n=-oo..+oo} x^(n^2). - Joerg Arndt, Mar 31 2024
The denominators look like those given for the partial sums of another series in A128507.
Rationals (partial sums) Theta(3,n) := Sum_{j=1..n} 1/(2*j-1)^3 (in lowest terms). The limit of these rationals is Theta(3) = (1-1/2^3)*Zeta(3) approximately 1.051799790 (Zeta(n) is the Euler-Riemann zeta function).
This is a member of the k-family of rational sequences Theta(k,n) := Sum_{j=1..n} 1/(2*j-1)^k, k >= 1, which coincides for k=1 with A025550/A025547 (but only for the first 38 terms), for k=2 with A120268/A128492, for k=3 with a(n)/A128507(n) (the denominators may depart for higher n values), A120269/A128493 and A164656/A164657, for k=4 and 5, respectively.

Examples

			Rationals Theta(3,n): [1, 28/27, 3527/3375, 1213136/1157625, 32797547/31255875, 43684790932/41601569625, ...].
		

Programs

  • Mathematica
    r[n_] := Sum[1/(2*j-1)^3, {j, 1, n}]; (* or r[n_] := (PolyGamma[2, n+1/2] - PolyGamma[2, 1/2])/16 // FullSimplify; *) Table[r[n] // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)

Formula

a(n) = numerator(Theta(3,n)) = numerator(Sum_{j=1..n} 1/(2*j-1)^3), n >= 1.
Theta(3,n) = (-Psi(2, 1/2) + Psi(2, n+1/2))/16, n >= 1, where Psi(n, k) = Polygamma(n,k) is the n-th derivative of the digamma function. Psi(2, 1/2) = -14*Zeta(3). - Jean-François Alcover, Dec 02 2013
Showing 1-10 of 11 results. Next