A035317
Pascal-like triangle associated with A000670.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 4, 7, 6, 3, 1, 5, 11, 13, 9, 3, 1, 6, 16, 24, 22, 12, 4, 1, 7, 22, 40, 46, 34, 16, 4, 1, 8, 29, 62, 86, 80, 50, 20, 5, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 1, 11, 56, 174, 367, 553, 610, 496, 295, 125
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 2;
1, 3, 4, 2;
1, 4, 7, 6, 3;
1, 5, 11, 13, 9, 3;
1, 6, 16, 24, 22, 12, 4;
1, 7, 22, 40, 46, 34, 16, 4;
1, 8, 29, 62, 86, 80, 50, 20, 5;
1, 9, 37, 91, 148, 166, 130, 70, 25, 5;
1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6;
...
- Vincenzo Librandi, Rows n = 0..100, flattened
- Joseph Briggs, Alex Parker, Coy Schwieder, and Chris Wells, Frogs, hats and common subsequences, arXiv preprint arXiv:2404.07285 [math.CO], 2024. See p. 28.
- A. Hlavác, M. Marvan, Nonlocal conservation laws of the constant astigmatism equation, arXiv preprint arXiv:1602.06861 [nlin.SI], 2016.
- E. Mendelson, Races with Ties, Math. Mag. 55 (1982), 170-175.
- Index entries for triangles and arrays related to Pascal's triangle
Triangle sums (see the comments):
A000975 (Row1),
A059841 (Row2),
A080239 (Kn11),
A052952 (Kn21),
A129696 (Kn22),
A001906 (Kn3),
A001654 (Kn4),
A001045 (Fi1, Fi2),
A023435 (Ca2), Gi2 (
A193146),
A190525 (Ze2),
A193147 (Ze3),
A181532 (Ze4). -
Johannes W. Meijer, Jul 20 2011
-
a035317 n k = a035317_tabl !! n !! k
a035317_row n = a035317_tabl !! n
a035317_tabl = map snd $ iterate f (0, [1]) where
f (i, row) = (1 - i, zipWith (+) ([0] ++ row) (row ++ [i]))
-- Reinhard Zumkeller, Jul 09 2012
-
A035317 := proc(n,k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(A035317(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
A035317 := proc(n,k): coeff(coeftayl(1/((y*x-1)*(y*x+1)*((y+1)*x-1)), x=0, n), y, k) end: seq(seq(A035317(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
-
t[n_, k_] := (-1)^k*(((-1)^k*(n+2)!*Hypergeometric2F1[1, n+3, k+2, -1])/((k+1)!*(n-k+1)!) + 2^(k-n-2)); Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Dec 14 2011, after Johannes W. Meijer *)
-
{T(n,k)=if(n==k,(n+2)\2,if(k==0,1,if(n>k,T(n-1,k-1)+T(n-1,k))))}
for(n=0,12,for(k=0,n,print1(T(n,k),","));print("")) \\ Paul D. Hanna, Jul 18 2012
-
def A035317_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
return [(-1)^k*prec(n+2, k) for k in (1..n)]
for n in (1..11): print(A035317_row(n)) # Peter Luschny, Mar 16 2016
A014301
Number of internal nodes of even outdegree in all ordered rooted trees with n edges.
Original entry on oeis.org
0, 1, 3, 11, 40, 148, 553, 2083, 7896, 30086, 115126, 442118, 1703052, 6577474, 25461493, 98759971, 383751472, 1493506534, 5820778858, 22714926826, 88745372992, 347087585824, 1358789148058, 5324148664846, 20878676356240, 81937643449468, 321786401450268
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Gi-Sang Cheon and Louis W. Shapiro, Protected points in ordered trees, Appl. Math. Letters, 21, 2008, 516-520.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020, Corollary 3.4.
- Torleiv Kløve, Spheres of Permutations under the Infinity Norm - Permutations with limited displacement, Reports in Informatics, Department of Informatics, University of Bergen, Norway, no. 376, November 2008.
- Index entries for sequences related to rooted trees
-
[(1/2)*(&+[(-1)^(n-k)*Binomial(n+k-1,k): k in [0..n]]): n in [1..30]]; // G. C. Greubel, Jan 15 2018
-
Rest[CoefficientList[Series[(1-2*x-Sqrt[1-4*x])/(3*Sqrt[1-4*x]-1+4*x), {x, 0, 50}], x]] (* G. C. Greubel, Jan 15 2018 *)
-
x='x+O('x^30); Vec((1-2*x-sqrt(1-4*x))/(3*sqrt(1-4*x)-1+4*x)) \\ G. C. Greubel, Jan 15 2018
-
from itertools import count, islice
def A014301_gen(): # generator of terms
yield from (0,1)
a, b, c = 0, 3, 1
for n in count(1):
yield ((b:=b*((n<<1)+3<<1)//(n+2))-(a:=(c:=c*((n<<2)+2)//(n+2))-a>>1))//3
A014301_list = list(islice(A014301_gen(),20)) # Chai Wah Wu, Apr 27 2023
A183160
a(n) = Sum_{k=0..n} C(n+k,n-k)*C(2*n-k,k).
Original entry on oeis.org
1, 2, 11, 62, 367, 2232, 13820, 86662, 548591, 3498146, 22436251, 144583496, 935394436, 6071718512, 39523955552, 257913792342, 1686627623151, 11050540084902, 72522925038257, 476669316338542, 3137209052543927, 20672732229560032, 136374124374593072, 900541325129687272
Offset: 0
G.f.: A(x) = 1 + 2*x + 11*x^2 + 62*x^3 + 367*x^4 + 2232*x^5 +...
A(x)^(1/2) = 1 + x + 5*x^2 + 26*x^3 + 145*x^4 + 841*x^5 + 5006*x^6 +...+ A183161(n)*x^n +...
Given triangle A085478(n,k) = C(n+k,n-k), which begins:
1;
1, 1;
1, 3, 1;
1, 6, 5, 1;
1, 10, 15, 7, 1;
1, 15, 35, 28, 9, 1; ...
ILLUSTRATE formula a(n) = Sum_{k=0..n} A085478(n,k)*A085478(n,n-k):
a(2) = 11 = 1*1 + 3*3 + 1*1;
a(3) = 62 = 1*1 + 6*5 + 5*6 + 1*1;
a(4) = 367 = 1*1 + 10*7 + 15*15 + 7*10 + 1*1;
a(5) = 2232 = 1*1 + 15*9 + 35*28 + 28*35 + 9*15 + 1*1; ...
-
[(&+[Binomial(n+k, 2*k)*Binomial(2*n-k, k): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 22 2021
-
Table[Sum[Binomial[n+k,n-k]Binomial[2n-k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 19 2011 *)
Table[HypergeometricPFQ[{-n, -n, 1/2 -n, n+1}, {1/2, 1, -2*n}, 1], {n, 0, 25}] (* G. C. Greubel, Feb 22 2021 *)
-
{a(n)=sum(k=0,n,binomial(n+k,n-k)*binomial(2*n-k,k))}
-
{a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/(1-2*x*G^2-3*x^2*G^4), n)} \\ Paul D. Hanna, Nov 03 2012
-
{a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/(1+3*x*G-5*x*G^2), n)} \\ Paul D. Hanna, Jun 16 2013
for(n=0, 30, print1(a(n), ", "))
-
a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],2)
[simplify(a(n)) for n in range(26)] # Peter Luschny, May 19 2015
A026637
Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = floor((3*n-1)/2) for n >= 1, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2, n >= 4.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 7, 13, 13, 7, 1, 1, 8, 20, 26, 20, 8, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, 11, 38, 74, 92, 74, 38, 11, 1, 1, 13, 49, 112, 166, 166, 112, 49, 13, 1, 1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1, 1, 16, 76, 223, 439, 610, 610, 439, 223, 76, 16, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 5, 8, 5, 1;
1, 7, 13, 13, 7, 1;
1, 8, 20, 26, 20, 8, 1;
1, 10, 28, 46, 46, 28, 10, 1;
1, 11, 38, 74, 92, 74, 38, 11, 1;
1, 13, 49, 112, 166, 166, 112, 49, 13, 1;
1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1;
-
a026637 n k = a026637_tabl !! n !! k
a026637_row n = a026637_tabl !! n
a026637_tabl = [1] : [1,1] : map (fst . snd)
(iterate f (0, ([1,2,1], [0,1,1,0]))) where
f (i, (xs, ws)) = (1 - i,
if i == 1 then (ys, ws) else (zipWith (+) ys ws, ws'))
where ys = zipWith (+) ([0] ++ xs) (xs ++ [0])
ws' = [0,1,0,0] ++ drop 2 ws
-- Reinhard Zumkeller, Aug 08 2013
-
function T(n,k) // T = A026637
if k eq 0 or k eq n then return 1;
elif k eq 1 or k eq n-1 then return Floor((3*n-1)/2);
else return T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 28 2024
-
A026637 := proc(n,k)
option remember;
if k=0 or k=n then
1
elif k=1 or k=n-1 then
floor((3*n-1)/2) ;
elif k <0 or k > n then
0;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if;
end proc: # R. J. Mathar, Apr 26 2015
-
T[n_, k_] := T[n, k] = Which[k == 0 || k == n, 1, k == 1 || k == n-1, Floor[(3n-1)/2], k < 0 || k > n, 0, True, T[n-1, k-1] + T[n-1, k]];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
-
def T(n,k): # T = A026637
if k==0 or k==n: return 1
elif k==1 or k==n-1: return ((3*n-1)//2)
else: return T(n-1, k) + T(n-1, k-1)
flatten([[T(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 28 2024
A172061
Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=4.
Original entry on oeis.org
1, 5, 22, 91, 367, 1461, 5776, 22748, 89402, 350974, 1377174, 5403193, 21201211, 83211277, 326703424, 1283211208, 5042294926, 19822108582, 77958648604, 306739666198, 1207433301046, 4754874514690, 18732340230592, 73827134976216
Offset: 0
a(4) = C(12,4)-C(11,3)+C(10,2)-C(9,1)+C(8,0)=55*9-55*3+45-9+1=367.
Cf.
A091526 (k=-2),
A072547 (k=-1),
A026641 (k=0),
A014300 (k=1),
A014301 (k=2),
A172025 (k=3),
A172062 (k=5),
A172063 (k=6),
A172064 (k=7),
A172065 (k=8),
A172066 (k=9),
A172067 (k=10).
-
k:=4; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 16 2019
-
a:= n-> add((-1)^(p)*binomial(2*n+4-p, n-p), p=0..n):
seq(a(n), n=0..30);
# second Maple program:
gf:= (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^4:
a:= n-> coeff(series(gf, z, n+10), z, n):
seq(a(n), n=0..30);
-
CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^4, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
-
k=4; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 16 2019
-
k=4; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 16 2019
A091526
Coefficient of x^n in 1/((1+x)*(1-x)^(n-1)).
Original entry on oeis.org
1, -1, 1, 2, 9, 34, 130, 496, 1897, 7274, 27966, 107788, 416394, 1611908, 6251596, 24287212, 94499689, 368202778, 1436458486, 5610483532, 21936442894, 85852554748, 336300861436, 1318441228432, 5172792817834, 20309402206084
Offset: 0
Cf.
A072547 (k=-1),
A026641 (k=0),
A014300 (k=1),
A014301 (k=2),
A172025 (k=3),
A172061 (k=4),
A172062 (k=5),
A172063 (k=6),
A172064 (k=7),
A172065 (k=8),
A172066 (k=9),
A172067 (k=10).
-
k:=-2; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 18 2019
-
for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+2,2+n-p)',p=0..n+2): od:seq(a(n),n=0..40):od; taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^(-2),z=0,42); # Richard Choulet, Jan 25 2010
-
Table[Sum[Binomial[n+i-2, i]*(-1)^(n-i),{i,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 19 2014 *)
Table[(-1)^n 2^(1-n)+Binomial[-1+2 n,1+n] Hypergeometric2F1[1,2 n,2+n,-1],{n,0,20}] (* Vaclav Kotesovec, Apr 19 2014 *)
With[{k = -2}, CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1 - Sqrt[1-4*x])/(2*x))^k, {x, 0, 30}], x]] (* G. C. Greubel, Feb 18 2019 *)
-
a(n)=sum(i=0,n,binomial(n+i-2,i)*(-1)^(n-i));
-
k=-2; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 18 2019
-
k=-2; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
A147855
G.f.: 1 / (1 + 4*x*G(x)^2 - 7*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 3, 22, 174, 1444, 12323, 107104, 942952, 8381596, 75053100, 676017962, 6118171326, 55591175956, 506805088026, 4633571685968, 42468065811884, 390071875757852, 3589637747968964, 33089300640166360, 305476314574338648, 2823932709938708824, 26137341654281261347
Offset: 0
G.f.: A(x) = 1 + 3*x + 22*x^2 + 174*x^3 + 1444*x^4 + 12323*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 4*x*G(x)^2 - 7*x*G(x)^3).
-
Table[Sum[Binomial[2*n+k,n-k]*Binomial[2*n-k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
-
{a(n)=sum(k=0, n, binomial(2*n+k, n-k)*binomial(2*n-k, k))}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, n, binomial(k, n-k)*binomial(4*n-k, k))}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+4*x*G^2-7*x*G^3), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-3*x*G^2-7*x^2*G^6), n)}
for(n=0, 30, print1(a(n), ", "))
A172025
Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=3.
Original entry on oeis.org
1, 4, 16, 62, 239, 920, 3544, 13672, 52834, 204528, 793092, 3080226, 11980667, 46662704, 181971248, 710454896, 2776717742, 10863073784, 42537035408, 166704021596, 653827252022, 2566222449104, 10079023179536, 39611016586832
Offset: 0
a(4) = C(11,4) - C(10,3) + C(9,2) - C(8,1) + C(7,0) = 330 - 120 + 36 - 8 + 1 = 239.
Cf.
A091526 (k=-2),
A072547 (k=-1),
A026641 (k=0),
A014300 (k=1),
A014301 (k=2),
A172061 (k=4),
A172062 (k=5),
A172063 (k=6),
A172064 (k=7),
A172065 (k=8),
A172066 (k=9),
A172067 (k=10).
-
k:=3; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 16 2019
-
a:= n-> add((-1)^(p)*binomial(2*n+3-p,n-p), p=0..n):
seq(a(n), n=0..30);
# second Maple program:
gf:= (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^3:
a:= n-> coeff(series(gf,z,n+10),z,n):
seq(a(n), n=0..30);
-
a[n_] := Binomial[2*n+3, n+3]*Hypergeometric2F1[1, -n, -3-2*n, -1]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 17 2013 *)
-
k=3; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 16 2019
-
k=3; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 16 2019
A172062
Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=5.
Original entry on oeis.org
1, 6, 29, 128, 541, 2232, 9076, 36568, 146446, 584082, 2322967, 9220544, 36548573, 144732176, 572756312, 2265577184, 8959034798, 35421613196, 140035644602, 553606049024, 2188652065586, 8653317051056, 34216118389384
Offset: 0
a(4) = C(13,4) - C(12,3) + C(11,2) - C(10,1) + C(9,0) = 13*11*5 - 20*11 + 55 - 10 + 1 = 541.
Cf.
A091526 (k=-2),
A072547 (k=-1),
A026641 (k=0),
A014300 (k=1),
A014301 (k=2),
A172025 (k=3),
A172061 (k=4),
A172063 (k=6),
A172064 (k=7),
A172065 (k=8),
A172066 (k=9),
A172067 (k=10).
-
k:=5; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
-
for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;
# 2nd program
for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;
-
CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^5, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
-
k=5; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
-
k=5; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
A172063
Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=6.
Original entry on oeis.org
1, 7, 37, 174, 771, 3300, 13820, 57044, 233108, 945793, 3817351, 15347362, 61520899, 246052888, 982365976, 3916739872, 15599504614, 62076995998, 246866382826, 981218764540, 3898442536366, 15483778158792, 61482966826992
Offset: 0
a(4) = C(14,4) - C(13,3) + C(12,2) - C(11,1) + C(10,0) = 7*13*11 - 26*11 + 66 - 11 + 1 = 771.
Cf.
A091526 (k=-2),
A072547 (k=-1),
A026641 (k=0),
A014300 (k=1),
A014301 (k=2),
A172025 (k=3),
A172061 (k=4),
A172062 (k=5),
A172064 (k=7),
A172065 (k=8),
A172066 (k=9),
A172067 (k=10).
-
k:=6; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
-
for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;
# 2nd program
for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;
-
CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^6, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
-
k=6; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
-
k=6; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
Comments