cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 205 results. Next

A106448 Table of (x+y)/gcd(x,y) where (x,y) runs through the pairs (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...

Original entry on oeis.org

2, 3, 3, 4, 2, 4, 5, 5, 5, 5, 6, 3, 2, 3, 6, 7, 7, 7, 7, 7, 7, 8, 4, 8, 2, 8, 4, 8, 9, 9, 3, 9, 9, 3, 9, 9, 10, 5, 10, 5, 2, 5, 10, 5, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 7, 14, 7, 14, 7, 2, 7, 14, 7, 14, 7, 14
Offset: 1

Views

Author

Antti Karttunen, May 21 2005

Keywords

Comments

Can also be viewed as a triangular table T(n,k) (n>=1, 1<=k<=n) read by rows: T(1,1); T(2,1), T(2,2); T(3,1), T(3,2), T(3,3); T(4,1), T(4,2), T(4,3), T(4,4); ... where T(n,k) gives the least value v>0 such that v*k = 0 modulo n+1, i.e., in other words, T(n,k) = (n+1)/gcd(n+1,k).

Examples

			The top left corner of the square array is:
   2  3  4  5  6  7  8  9 10 11 ...
   3  2  5  3  7  4  9  5 11 ...
   4  5  2  7  8  3 10 11 ...
   5  3  7  2  9  5 11 ...
   6  7  8  9  2 11 ...
   7  4  3  5 11 ...
   8  9 10 11 ...
   9  5 11 ...
  10 11 ...
  11 ...
		

Crossrefs

GF(2)[X] analog: A106449. Row 1 is n+1, row 2 is LEFT(LEFT(LEFT(A026741))), row 3 is LEFT^4(A051176). Essentially the same as A054531, but without its right-hand edge of all-1's.

Formula

T(n, k) = numerator((n+k)/n) = numerator((n+k)/k). - Michel Marcus, Dec 29 2013

A106610 Numerator of n/(n+9).

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 2, 7, 8, 1, 10, 11, 4, 13, 14, 5, 16, 17, 2, 19, 20, 7, 22, 23, 8, 25, 26, 3, 28, 29, 10, 31, 32, 11, 34, 35, 4, 37, 38, 13, 40, 41, 14, 43, 44, 5, 46, 47, 16, 49, 50, 17, 52, 53, 6, 55, 56, 19, 58, 59, 20, 61, 62, 7, 64, 65, 22, 67, 68, 23, 70, 71, 8, 73, 74, 25, 76, 77
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

Apart from 0, also numerator of Sum_{i=1..n} (1/((i+2)*(i+3))) = n/(3n+9). - Bruno Berselli, Nov 07 2012
In addition to being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019

Examples

			For n = 12, n/(n+9) = 12/21 = 4/7. So, a(12) = 4. - _Indranil Ghosh_, Jan 31 2017
From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (2*3)*G(x^3) - (2*9)*G(x^9) , where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (2/3)*H(x^3) - (2/9)*H(x^9), where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (2/3^2)*L(x^3) - (2/9^2)*L(x^9), where L(x) = Log(1/(1 - x)).
Sum_{n >= 1} (1/a(n))*x^n = L(x) + (2/3)*L(x^3) + (2/3)*L(x^9). (End)
		

References

  • Raffaello Giusti, editore, Supplemento al Periodico di Matematica (Livorno), Jul 1902, p. 138 (Problem 421, case k=3).

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109050(n)/9.
Dirichlet g.f. zeta(s-1)*(1-2/3^s-2/9^s).
Multiplicative with a(3^e) = 3^max(0,e-2), a(p^e) = p^e if p<>3. (End)
a(n) = 2*a(n-9) - a(n-18). - G. C. Greubel, Feb 19 2019
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,9), where gcd(n,9) = [1, 1, 3, 1, 1, 3, 1, 1, 9, ...] is a periodic sequence of period 9: a(n) is thus quasi_polynomial in n.
O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - 2*F(x^3) - 2*F(x^9), where F(x) = x/(1 - x)^2.
More generally, for m >= 1, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 3^m)*( F(m,x^3) + F(m,x^9) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (61/162) * n^2. - Amiram Eldar, Nov 25 2022

A106618 a(n) = numerator of n/(n+17).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 2, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 3, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 4, 69, 70, 71, 72, 73, 74
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

a(n) <> n iff n = 17 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

Dirichlet g.f.: zeta(s-1)*(1 - 16/17^s). - R. J. Mathar, Apr 18 2011
a(n) = 2*a(n-17) - a(n-34). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(17^e) = 17^(e-1), and a(p^e) = p^e if p != 17.
Sum_{k=1..n} a(k) ~ (273/578) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 33*log(2)/17. - Amiram Eldar, Sep 08 2023

A109196 Number of returns to the x-axis from above (i.e., d steps hitting the x-axis) in all Grand Motzkin paths of length n.

Original entry on oeis.org

1, 3, 11, 35, 112, 350, 1087, 3351, 10286, 31460, 95966, 292110, 887629, 2693423, 8163367, 24717575, 74778718, 226066940, 683006416, 2062412936, 6224697139, 18779180645, 56633215930, 170733734210, 514559844007, 1550364293145
Offset: 2

Views

Author

Emeric Deutsch, Jun 22 2005

Keywords

Comments

A Grand Motzkin path of length n is a path in the half-plane x >= 0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).
The substitution x->x/(1+x+x^2), the inverse Motzkin transform, yields a g.f. for the sequence 0,0,2,2,6,4,..., that is 0 followed by 2*A026741(n-1). - R. J. Mathar, Nov 10 2008

Examples

			a(3)=3 because we have the following 7 (=A002426(3)) Grand Motzkin paths of length 3: hhh, hu(d), hdu, u(d)h, duh, uh(d) and dhu; they have a total of 3 returns from above to the x-axis (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    g:=(1-z-sqrt(1-2*z-3*z^2))/2/(1-2*z-3*z^2): gser:=series(g,z=0,32): seq(coeff(gser,z^n),n=2..30);
  • Mathematica
    Rest[Rest[CoefficientList[Series[(1 - x - Sqrt[1 - 2 x - 3 x^2]) / (2 (1 - 2 x - 3 x^2)), {x, 0, 35}], x]]] (* Vincenzo Librandi, Nov 04 2016 *)

Formula

G.f.: (1-z-sqrt(1-2*z-3*z^2)) / (2*(1-2*z-3*z^2)).
a(n) = Sum_{k=0..floor(n/2)} k*A109195(n,k).
a(n) = (1/2) * A109194(n).
From Benedict W. J. Irwin, Nov 02 2016: (Start)
Conjecture: a(n) = (2*(-1)^n + 2*3^n + (2^n*(2*n - 1)!!*(3*A - 4*B))/n! - 3*(n + 1)*C)/8.
A = 2F1(1-n,-n; 1/2-n; 1/4).
B = 2F1(-n,-n; 1/2-n; 1/4).
2^n*(2*n - 1)!!*(3*A - 4*B))/n! = A103872(n-2).
C = 3F2(1-n,(1-n)/2,-n/2; 2,-n-1; 4) = A025565(n)/n. (End)
a(n) ~ 3^n/4 * (1-sqrt(3/(Pi*n))). - Vaclav Kotesovec, Nov 05 2016
D-finite with recurrence n*a(n) +(-4*n+3)*a(n-1) +(-2*n+3)*a(n-2) +3*(4*n-9)*a(n-3) +9*(n-3)*a(n-4)=0. - R. J. Mathar, Feb 08 2021

A118411 Numerator of sum of reciprocals of first n pentatope numbers A000332.

Original entry on oeis.org

1, 6, 19, 136, 83, 119, 656, 73, 190, 121, 1816, 559, 679, 815, 3872, 1139, 886, 513, 2360, 2023, 2299, 2599, 11696, 3275, 7306, 1353, 5992, 1653, 5455, 5983, 26176, 7139, 15538, 8435, 12184, 3293, 3553, 11479, 49360
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2006

Keywords

Comments

Denominators are A118412. Fractions are: 1/1, 6/5, 19/15, 136/105, 83/63, 119/90, 656/495, 73/55, 190/143, 121/91, 1816/1365, 559/420, 679/510, 815/612, 3872/2907, 1139/855, 886/665, 513/385, 2360/1771, 2023/1518, 2299/1725, 2599/1950, 11696/8775, 3275/2457, 7306/5481, 1353/1015, 5992/4495, 1653/1240, 5455/4092, 5983/4488, 26176/19635, 7139/5355, 15538/11655, 8435/6327, 12184/9139, 3293/2470, 3553/2665, 11479/8610, 49360/37023. The denominator of sum of reciprocals of first n triangular numbers is A026741. The denominator of sum of reciprocals of first n tetrahedral numbers is A118392.

Examples

			a(1) = 1 = numerator of 1/1.
a(2) = 6 = numerator of 6/5 = 1/1 + 1/5.
a(3) = 19 = numerator of 19/15 = 1/1 + 1/5 + 1/15.
a(4) = 136 = numerator of 136/105 = 1/1 + 1/5 + 1/15 + 1/35.
a(5) = 55 = numerator of 55/42 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70.
a(10) = 190 = numerator of 190/143 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715.
a(20) = 2360 = numerator of 2360/1771 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715 + 1/1001 + 1/1365 + 1/1820 + 1/2380 + 1/3060 + 1/3876 + 1/4845 + 1/5985 + 1/7315 + 1/8855.
		

Crossrefs

Programs

  • PARI
    s=0;for(i=4,50,s+=1/binomial(i,4);print(numerator(s))) /* Phil Carmody, Mar 27 2012 */

Formula

A118411(n)/A118412(n) = SUM[i=1..n] (1/A000332(n)). A118411(n)/A118412(n) = SUM[i=1..n] (1/C(n+2,4)). A118411(n)/A118412(n) = SUM[i=1..n] (1/(n*(n+1)*(n+2)*(n+3)/24)).

A118412 Denominator of sum of reciprocals of first n pentatope numbers A000332.

Original entry on oeis.org

1, 5, 15, 105, 42, 63, 90, 495, 55, 143, 91, 1365, 420, 510, 612, 2907, 855, 665, 385, 1771, 1518, 1725, 1950, 8775, 2457, 5481, 1015, 4495, 1240, 4092, 4488, 19635, 5355, 11655, 6327, 9139, 2470, 2665, 8610, 37023
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2006

Keywords

Comments

Numerators are A118411. Fractions are: 1/1, 6/5, 19/15, 136/105, 83/63, 119/90, 656/495, 73/55, 190/143, 121/91, 1816/1365, 559/420, 679/510, 815/612, 3872/2907, 1139/855, 886/665, 513/385, 2360/1771, 2023/1518, 2299/1725, 2599/1950, 11696/8775, 3275/2457, 7306/5481, 1353/1015, 5992/4495, 1653/1240, 5455/4092, 5983/4488, 26176/19635, 7139/5355, 15538/11655, 8435/6327, 12184/9139, 3293/2470, 3553/2665, 11479/8610, 49360/37023. The denominator of sum of reciprocals of first n triangular numbers is A026741. The denominator of sum of reciprocals of first n tetrahedral numbers is A118392.

Examples

			a(1) = 1 = denominator of 1/1.
a(2) = 5 = denominator of 6/5 = 1/1 + 1/5.
a(3) = 15 = denominator of 19/15 = 1/1 + 1/5 + 1/15.
a(4) = 105 = denominator of 136/105 = 1/1 + 1/5 + 1/15 + 1/35.
a(5) = 42 = denominator of 55/42 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70.
a(10) = 143 = denominator of 190/143 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715.
a(20) = 1771 = denominator of 2360/1771 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715 + 1/1001 + 1/1365 + 1/1820 + 1/2380 + 1/3060 + 1/3876 + 1/4845 + 1/5985 + 1/7315 + 1/8855.
		

Crossrefs

Programs

  • PARI
    s=0;for(i=4,50,s+=1/binomial(i,4);print(denominator(s))) /* Phil Carmody, Mar 27 2012 */

Formula

A118411(n)/A118412(n) = SUM[i=1..n] (1/A000332(n)). A118411(n)/A118412(n) = SUM[i=1..n] (1/C(n+2,4)). A118411(n)/A118412(n) = SUM[i=1..n] (1/(n*(n+1)*(n+2)*(n+3)/24)).

A119790 a(n) is the sum of the positive integers each of which is <= n and is divisible by exactly one prime dividing n (but is coprime to every other prime dividing n). (a(1) = 1).

Original entry on oeis.org

1, 2, 3, 6, 5, 9, 7, 20, 18, 25, 11, 36, 13, 49, 45, 72, 17, 81, 19, 100, 84, 121, 23, 144, 75, 169, 135, 196, 29, 210, 31, 272, 198, 289, 175, 324, 37, 361, 273, 400, 41, 420, 43, 484, 405, 529, 47, 576, 196, 625, 459, 676, 53, 729, 385, 784, 570, 841, 59, 840, 61, 961
Offset: 1

Views

Author

Leroy Quet, Jul 30 2006

Keywords

Comments

a(n) is divisible by A026741(n). - Robert Israel, Oct 01 2017

Examples

			12 is divisible by 2 and 3. The positive integers which are <= 12 and which are divisible by 2 or 3 but not by both 2 and 3 are: 2, 3, 4, 8, 9, 10. a(12) = the sum of these integers, which is 36.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local P;
      P:= convert(numtheory:-factorset(n),list);
      convert(select(k -> nops(select(p->k mod p = 0, P))=1, [$2..n]),`+`)
    end proc:
    1, seq(f(n),n=2..100); # Robert Israel, Oct 01 2017
  • Mathematica
    Table[Total@ Select[Range@ n, Function[k, Total@ Boole@ Map[Divisible[k, #] &, FactorInteger[n][[All, 1]]] == 1]], {n, 62}] (* Michael De Vlieger, Oct 01 2017 *)

Extensions

Corrected and extended by Joshua Zucker, Aug 12 2006

A122576 Expansion of g.f.: -x*(1 - 2*x + 6*x^2 - 2*x^3 + x^4)/((1-x)^3*(1+x)^4).

Original entry on oeis.org

-1, 3, -12, 20, -45, 63, -112, 144, -225, 275, -396, 468, -637, 735, -960, 1088, -1377, 1539, -1900, 2100, -2541, 2783, -3312, 3600, -4225, 4563, -5292, 5684, -6525, 6975, -7936, 8448, -9537, 10115, -11340, 11988, -13357, 14079, -15600, 16400, -18081, 18963, -20812, 21780, -23805
Offset: 1

Views

Author

Roger L. Bagula, Sep 17 2006

Keywords

Comments

Unsigned = row sums of triangle A143120 and Sum_{n>=1} n*A026741(n). - Gary W. Adamson, Jul 26 2008
Unsigned = partial sums of positive integers of A129194. - Omar E. Pol, Aug 22 2011
Unsigned, see A212760. - Clark Kimberling, May 29 2012

References

  • Roger G. Newton, Scattering Theory of Waves and Particles, McGraw Hill, 1966; p. 254.

Crossrefs

Programs

  • Magma
    [(n+1)*(n+2)*(2*n+3+(-1)^n)*(-1)^(n+1)/8 : n in [0..50]]; // Wesley Ivan Hurt, Jul 22 2014
    
  • Maple
    A122576:=n->(n+1)*(n+2)*(2*n+3+(-1)^n)*(-1)^(n+1)/8: seq(A122576(n), n=0..50); # Wesley Ivan Hurt, Jul 22 2014
  • Mathematica
    Table[(n + 1) (n + 2) (2 n + 3 + (-1)^n) (-1)^(n + 1)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Jul 22 2014 *)
    CoefficientList[Series[(1 -2 x +6 x^2 -2 x^3 +x^4)/((x-1)^3 (x+1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 23 2014 *)
  • SageMath
    def A122576(n): return n*(n+1)*((2*n+1)*(-1)^n - 1)//8
    [A122576(n) for n in range(1,51)] # G. C. Greubel, Nov 02 2024

Formula

a(n) = n*(n+1)/8 * ((2*n+1)*(-1)^n - 1). - Ralf Stephan, Jan 01 2014
a(n) = (n+1)*(n+2)*(2*n+3+(-1)^n)*(-1)^(n+1)/8 (with offset of 0). - Wesley Ivan Hurt, Jul 22 2014
E.g.f.: -(1/8)*x*( (6 - 9*x + 2*x^2)*exp(-x) + (2+x)*exp(x) ). - G. C. Greubel, Nov 02 2024

Extensions

Edited by N. J. A. Sloane, May 20 2007. The simple generating function now used to define the sequence was found by an anonymous correspondent.

A122765 Triangle read by rows: Let p(k, x) = x*p(k-1, x) - p(k-2, x). Then T(k,x) = dp(k,x)/dx.

Original entry on oeis.org

1, -1, 2, -2, -2, 3, 2, -6, -3, 4, 3, 6, -12, -4, 5, -3, 12, 12, -20, -5, 6, -4, -12, 30, 20, -30, -6, 7, 4, -20, -30, 60, 30, -42, -7, 8, 5, 20, -60, -60, 105, 42, -56, -8, 9, -5, 30, 60, -140, -105, 168, 56, -72, -9, 10
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 22 2006

Keywords

Comments

Based on the coefficients of derivatives of the polynomials in A130777.

Examples

			Triangle begins as:
   1;
  -1,   2;
  -2,  -2,   3;
   2,  -6,  -3,   4;
   3,   6, -12,  -4,   5;
  -3,  12,  12, -20,  -5,   6;
  -4, -12,  30,  20, -30,  -6,   7;
   4, -20, -30,  60,  30, -42,  -7,   8;
   5,  20, -60, -60, 105,  42, -56,  -8,  9;
		

Crossrefs

Programs

  • Magma
    A122765:= func< n,k | k*(-1)^Binomial(n-k+1, 2)*Binomial(Floor((n+k)/2), k) >;
    [A122765(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Dec 30 2022
    
  • Mathematica
    (* First program *)
    p[0,x]=1; p[1,x]=x-1; p[k_,x_]:= p[k, x]= x*p[k-1,x] -p[k-2,x]; a = Table[Expand[p[n, x]], {n, 0, 10}]; Table[CoefficientList[D[a[[n]], x], x], {n, 2, 10}]//Flatten
    (* Second program *)
    T[n_, k_]:= k*(-1)^Binomial[n-k+1,2]*Binomial[Floor[(n+k)/2], k];
    Table[T[n, k], {n,14}, {k,n}]//Flatten (* G. C. Greubel, Dec 30 2022 *)
  • PARI
    tpol(n) = if (n<=0, 1, if (n==1, x-1, x*tpol(n-1) -tpol(n-2)));
    lista(nn) = {for(n=0, nn, pol = deriv(tpol(n)); for (k=0, poldegree(pol), print1(polcoeff(pol, k), ", ");););} \\ Michel Marcus, Feb 07 2014
    
  • SageMath
    def A122765(n, k): return k*(-1)^binomial(n-k+1, 2)*binomial(((n+k)//2), k)
    flatten( [[A122765(n,k) for k in range(1,n+1)] for n in range(1,15)] ) # G. C. Greubel, Dec 30 2022

Formula

From G. C. Greubel, Dec 30 2022: (Start)
T(n, k) = coefficient [x^k]( p(n, x) ), where p(n,x) = (2/(x^2-4))*((n+1)*chebyshev_T(n+1,x/2) -n*chebyshev_T(n,x/2) - (x/2)*(chebyshev_U(n,x/2) - chebyshev_U(n-1,x/2))).
T(n, k) = k*(-1)^binomial(n-k+1, 2)*binomial(floor((n+k)/2), k).
T(n, n) = n.
T(n, n-1) = -(n-1).
T(n, n-2) = -2*A000217(n-2).
T(n, n-3) = 2*A000217(n-3).
T(n, 1) = (-1)^binomial(n, 2)*floor((n+1)/2).
T(n, 2) = 2*(-1)^binomial(n-1, 2)*binomial(floor((n+2)/2), 2).
Sum_{k=1..n} T(n, k) = A076118(n).
Sum_{k=1..n} (-1)^k*T(n, k) = (-1)^(n-1)*A165202(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = [n=1] - [n=2].
Sum_{k=1..floor((n+1)/2)} (-1)^k*T(n-k+1, k) = (-1)^binomial(n+1, 2)*b(n), where b(n) = 4^floor(n/4)*A026741(n/2) if n is even and b(n) = 4^floor((n-1)/4)*A026741((n-1)/4) if n is odd. (End)

Extensions

Name corrected and more terms from Michel Marcus, Feb 07 2014

A129202 Denominator of 3*(3+(-1)^n) / (n+1)^2.

Original entry on oeis.org

1, 2, 3, 8, 25, 6, 49, 32, 27, 50, 121, 24, 169, 98, 75, 128, 289, 54, 361, 200, 147, 242, 529, 96, 625, 338, 243, 392, 841, 150, 961, 512, 363, 578, 1225, 216, 1369, 722, 507, 800, 1681, 294, 1849, 968, 675, 1058, 2209, 384, 2401, 1250, 867, 1352, 2809, 486
Offset: 0

Views

Author

Paul Barry, Apr 03 2007

Keywords

Comments

A divisibility sequence, that is, if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019

Crossrefs

Cf. A026741, A051176, A129196, A129197 (numerators), A060789.

Programs

  • Magma
    [Denominator(3*(3+(-1)^n)/(n+1)^2): n in [0..50]]; // G. C. Greubel, Oct 26 2017
  • Maple
    A129202:=n->numer((n+1)/2)*numer((n+1)/3): seq(A129202(n), n=0..100); # Wesley Ivan Hurt, Jul 18 2014
  • Mathematica
    Table[Numerator[(n + 1)/2] Numerator[(n + 1)/3], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 18 2014 *)
    LinearRecurrence[{0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 1}, {1, 2, 3, 8, 25, 6, 49, 32, 27, 50, 121, 24, 169, 98, 75, 128, 289, 54}, 60] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    for(n=0,50, print1(denominator(3*(3+(-1)^n)/(n+1)^2), ", ")) \\ G. C. Greubel, Oct 26 2017
    

Formula

a(n) = A129196(n)/(n+1).
(1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*(n+1)*t)*((t-Pi)/i)^3 dt = (a(n)*Pi^2-A129203(n))/A129196(n), i=sqrt(-1).
a(n) = ( Numerator of (n+1)/2 ) * ( Numerator of (n+1)/3 ) = A026741(n+1) * A051176(n+1). - Wesley Ivan Hurt, Jul 18 2014
G.f.: -(x^16 +2*x^15 +3*x^14 +8*x^13 +25*x^12 +6*x^11 +46*x^10 +26*x^9 +18*x^8 +26*x^7 +46*x^6 +6*x^5 +25*x^4 +8*x^3 +3*x^2 +2*x +1) / ((x -1)^3*(x +1)^3*(x^2 -x +1)^3*(x^2 +x +1)^3). - Colin Barker, Jul 18 2014
a(n+18) = 3*a(n+12)-3*a(n+6)+a(n). - Robert Israel, Jul 18 2014
a(n) = 2*(n+1)^2 * (7-4*cos(2*Pi*(n+1)/3)) / (9*(3-(-1)^n)). - Vaclav Kotesovec, Jul 20 2014
From Peter Bala, Feb 27 2019: (Start)
The following remarks assume an offset of 1.
a(n) = n^2/gcd(n,6) = n*A060789(n).
a(n) = n^2/b(n), where b(n) is the purely periodic sequence [1,2,3,2,1,6,...] with period 6. Thus a(n) is a quasi-polynomial in n:
a(6*n+1) = (6*n + 1)^2;
a(6*n+2) = 2*(3*n + 1)^2;
a(6*n+3) = 3*(2*n + 1)^2;
a(6*n+4) = 2*(3*n + 2)^2;
a(6*n+5) = (6*n + 5)^2;
a(6*n) = 6*n^2.
O.g.f.: F(x) - 2*F(x^2) - 6*F(x^3) + 12*F(x^6), where F(x) = x*(1 + x)/(1 - x)^3 is the generating function for the squares. (End)
Sum_{n>=0} 1/a(n) = 55*Pi^2/216. - Amiram Eldar, Sep 27 2022

Extensions

More terms from Wesley Ivan Hurt, Jul 18 2014
Previous Showing 101-110 of 205 results. Next