cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 205 results. Next

A103628 Total sum of parts of multiplicity 1 in all partitions of n.

Original entry on oeis.org

0, 1, 2, 6, 10, 21, 33, 59, 89, 145, 212, 325, 463, 680, 948, 1348, 1845, 2558, 3446, 4681, 6219, 8306, 10901, 14352, 18632, 24230, 31151, 40077, 51074, 65088, 82290, 103986, 130517, 163679, 204078, 254174, 314975, 389839, 480369, 591133, 724600, 886965
Offset: 0

Views

Author

Vladeta Jovovic, Mar 25 2005

Keywords

Comments

Total number of parts of multiplicity 1 in all partitions of n is A024786(n+1).
Equals A000041 convolved with A026741. - Gary W. Adamson, Jun 11 2009

Examples

			Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and a(4) = 0 + 2 + 0 + (1+3) + 4 = 10.
		

Crossrefs

Cf. A026741. - Gary W. Adamson, Jun 11 2009
Column k=1 of A222730. - Alois P. Heinz, Mar 03 2013

Programs

  • Maple
    gf:=x*(1+x+x^2)/(1-x^2)^2/product((1-x^k), k=1..500): s:=series(gf, x, 100): for n from 0 to 60 do printf(`%d,`,coeff(s, x, n)) od: # James Sellers, Apr 22 2005
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], add((l->`if`(j=1, [l[1],
           l[2]+l[1]*i], l))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 03 2013
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[3]]; a[0] = 0; Table[a[n], {n, 0, 50}]  (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: x*(1+x+x^2)/(1-x^2)^2 /Product_{k>0}(1-x^k).
a(n) = A066186(n) - A194544(n). - Omar E. Pol, Nov 20 2011
a(n) = 3*A014153(n)/4 - 3*A000070(n)/4 - A270143(n+1)/4 + A087787(n)/4. - Vaclav Kotesovec, Nov 05 2016
a(n) ~ 3^(3/2) * exp(Pi*sqrt(2*n/3)) / (8*Pi^2) * (1 - Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Nov 05 2016

Extensions

More terms from James Sellers, Apr 22 2005

A241269 Denominator of c(n) = (n^2+n+2)/((n+1)*(n+2)*(n+3)).

Original entry on oeis.org

3, 6, 15, 60, 105, 21, 126, 360, 495, 330, 429, 1092, 1365, 420, 1020, 2448, 2907, 1710, 1995, 4620, 5313, 759, 3450, 7800, 8775, 4914, 5481, 12180, 13485, 3720, 8184, 17952, 19635, 10710, 11655, 25308, 27417, 3705, 15990, 34440, 37023, 19866, 21285, 45540
Offset: 0

Views

Author

Paul Curtz, Apr 18 2014

Keywords

Comments

All terms are multiples of 3.
Difference table of c(n):
1/3, 1/6, 2/15, 7/60, 2/21,...
-1/6, -1/30, -1/60, -1/84, -1/105,...
2/15, 1/60, 1/210, 1/420, 1/630,...
-7/60, -1/84, -1/420, -1/1260, -1/2520,... .
This is an autosequence of the second kind; the inverse binomial transform is the signed sequence. The main diagonal is the first upper diagonal multiplied by 2.
Denominators of the main diagonal: A051133(n+1).
Denominators of the first upper diagonal; A000911(n).
c(n) is a companion to A026741(n)/A045896(n).
Based on the Akiyama-Tanigawa transform applied to 1/(n+1) which yields the Bernoulli numbers A164555(n)/A027642(n).
Are the numerators of the main diagonal (-1)^n? If yes, what is the value of 1/3 - 1/30 + 1/210,... or 1 - 1/10 + 1/70 - 1/420, ... , from A002802(n)?
Is a(n+40) - a(n) divisible by 10?
No: a(5) = 21 but a(45) = 12972. # Robert Israel, Jul 17 2023
Are the common divisors to A014206(n) and A007531(n+3) of period 16: repeat 2, 4, 4, 2, 2, 16, 4, 2, 2, 4, 4, 2, 2, 8, 4, 2?
Reduce c(n) = f(n) = b(n)/a(n) = 1/3, 1/6, 2/15, 7/60, 11/105, 2/21, 11/126, 29/360, ... .
Consider the successively interleaved autosequences (also called eigensequences) of the second kind and of the first kind
1, 1/2, 1/3, 1/4, 1/5, 1/6, ...
0, 1/6, 1/6, 3/20, 2/15, 5/42, ...
1/3, 1/6, 2/15, 7/60, 11/105, 2/21, ...
0, 1/10, 1/10, 13/140, 3/35, 5/63, ...
1/5, 1/10, 3/35, 11/140, 23/315, 43/630, ...
0, 1/14, 1/14, 17/252, 4/63, ...
This array is Au1(m,n). Au1(0,0)=1, Au1(0,1)=1/2.
Au1(m+1,n) = 2*Au1(m,n+1) - Au1(m,n).
First row: see A003506, Leibniz's Harmonic Triangle.
Second row: A026741/A045896.
a(n) is the denominator of the third row f(n).
The first column is 1, 0, 1/3, 0, 1/5, 0, 1/7, 0, ... . Numerators: A093178(n+1). This incites, considering tan(1), to introduce before the first row
Ta0(n) = 0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, ... .

Programs

  • Maple
    seq(denom((n^2+n+2)/((n+1)*(n+2)*(n+3))),n=0..1000);
  • Mathematica
    Denominator[Table[(n^2+n+2)/Times@@(n+{1,2,3}),{n,0,50}]] (* Harvey P. Dale, Mar 27 2015 *)
  • PARI
    for(n=0, 100, print1(denominator((n^2+n+2)/((n+1)*(n+2)*(n+3))), ", ")) \\ Colin Barker, Apr 18 2014

Formula

c(n) = A014206(n)/A007531(n+3).
The sum of the difference table main diagonal is 1/3 - 1/30 + 1/210 - ... = 10*A086466-4 = 4*(sqrt(5)*log(phi)-1) = 0.3040894... - Jean-François Alcover, Apr 22 2014
a(n) = (n+1)*(n+2)*(n+3)/gcd(4*n - 4, n^2 + n + 2), where gcd(4*n - 4, n^2 + n + 2) is periodic with period 16. - Robert Israel, Jul 17 2023

Extensions

More terms from Colin Barker, Apr 18 2014

A334006 Triangle read by rows: T(n,k) = (the number of nonnegative bases m < n such that m^k == m (mod n))/(the number of nonnegative bases m < n such that -m^k == m (mod n)) for nonnegative k < n, n >= 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 7, 1, 3, 1, 3, 1, 1, 4, 1, 5, 1, 5, 1, 5, 1, 9, 1, 3, 1, 3, 1, 7, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 6, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 13, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 7, 1, 3, 1, 3
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 12 2020

Keywords

Comments

If the sum of proper divisors of q in row q <= q, then q are 1, 2, 3, 4, 5, 8, 16, 17, 32, 64, 128, 256, 257, ...(union of Fermat primes and powers of 2).

Examples

			Triangle T(n,k) begins:
  n\k| 0   1  2  3  4   5  6  7  8   9 10 11 12  13 14 15 16
  ---+------------------------------------------------------
   1 | 1;
   2 | 1,  1;
   3 | 1,  3, 1;
   4 | 1,  2, 1, 3;
   5 | 1,  5, 1, 1, 1;
   6 | 1,  3, 1, 3, 1,  3;
   7 | 1,  7, 1, 3, 1,  3, 1;
   8 | 1,  4, 1, 5, 1,  5, 1, 5;
   9 | 1,  9, 1, 3, 1,  3, 1, 7, 1;
  10 | 1,  5, 1, 1, 1,  5, 1, 1, 1,  5;
  11 | 1, 11, 1, 3, 1,  3, 1, 3, 1,  3, 1;
  12 | 1,  6, 1, 9, 1,  9, 1, 9, 1,  9, 1, 9;
  13 | 1, 13, 1, 1, 1,  5, 1, 1, 1,  5, 1, 1, 1;
  14 | 1,  7, 1, 3, 1,  3, 1, 7, 1,  3, 1, 3, 1, 7;
  15 | 1, 15, 1, 3, 1, 15, 1, 3, 1, 15, 1, 3, 1, 15, 1;
  16 | 1,  8, 1, 5, 1,  9, 1, 5, 1,  9, 1, 5, 1,  9, 1, 5;
  17 | 1, 17, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1;
  ...
For (n, k) = (7, 3), there are three nonnegative values of m < n such that m^3 == m (mod 7) (namely 0, 1, and 6) and one nonnegative value of m < n such that -m^3 == m (mod 7) (namely 0), so T(7,3) = 3/1 = 3.
		

Crossrefs

Programs

  • Magma
    [[#[m: m in [0..n-1] | m^k mod n eq m]/#[m: m in [0..n-1] | -m^k mod n eq m]: k in [0..n-1]]: n in [1..17]];
    
  • PARI
    T(n, k) = sum(m=0, n-1, Mod(m, n)^k == m)/sum(m=0, n-1, -Mod(m, n)^k == m);
    matrix(7, 7, n, k, k--; if (k>=n, 0, T(n,k))) \\ to see the triangle \\ Michel Marcus, Apr 17 2020

Extensions

Name corrected by Peter Kagey, Sep 12 2020

A013942 Triangle of numbers T(n,k) = floor(2n/k), k=1..2n, read by rows.

Original entry on oeis.org

2, 1, 4, 2, 1, 1, 6, 3, 2, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 14, 7, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 18, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20, 10, 6, 5, 4, 3
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the leading term in period of continued fraction for n-th nonsquare.
Row A026741(n) contains n and all rows with a smaller row number do not contain n. - Reinhard Zumkeller, Jun 04 2013

Examples

			First four rows:
  2 1
  4 2 1 1
  6 3 2 1 1 1
  8 4 2 2 1 1 1 1
  ...
		

Crossrefs

Cf. A010766.
Cf. A005843 (row lengths and left edge), A062550 (row sums).

Programs

  • Haskell
    a013942 n k = a013942_tabf !! (n-1) !! (k-1)
    a013942_row n = map (div (n * 2)) [1 .. 2 * n]
    a013942_tabf = map a013942_row [1 ..]
    -- Reinhard Zumkeller, Jun 04 2013
    
  • Mathematica
    f[n_,h_]:=FractionalPart[(n^2+h)^(1/2)];
    g[n_,h_]:=Floor[1/f[n,h]];
    TableForm[Table[g[n,h],{n,1,13},{h,1,2n}]]
  • PARI
    T(n, k) = 2*n\k;
    tabf(nn) = for (n=1, nn, for (k=1, 2*n, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Sep 30 2016

Formula

T(n,k) = floor(2n/k), k=1,...,2n.
T(n,k) = [1/{sqrt(k+n^2)}], k=1,2,...,2n, {}=fractional part, []=floor.

Extensions

Keyword tabl replaced by tabf and missing a(90)=1 inserted by Reinhard Zumkeller, Jun 04 2013

A098832 Square array read by antidiagonals: even-numbered rows of the table are of the form n*(n+m) and odd-numbered rows are of the form n*(n+m)/2.

Original entry on oeis.org

1, 3, 3, 6, 8, 2, 10, 15, 5, 5, 15, 24, 9, 12, 3, 21, 35, 14, 21, 7, 7, 28, 48, 20, 32, 12, 16, 4, 36, 63, 27, 45, 18, 27, 9, 9, 45, 80, 35, 60, 25, 40, 15, 20, 5, 55, 99, 44, 77, 33, 55, 22, 33, 11, 11, 66, 120, 54, 96, 42, 72, 30, 48, 18, 24, 6, 78, 143, 65, 117, 52, 91, 39, 65, 26, 39, 13, 13
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 02 2004

Keywords

Comments

The rows of this table and that in A098737 are related. Given a function f = n/( 1 + (1+n) mod(2) ), row n of A098737 can be derived from row n of T by multiplying the latter by f(n); row n of T can be derived from row n of A098737 by dividing the latter by f(n).

Examples

			Array begins as:
  1,  3,  6, 10, 15, 21,  28,  36,  45 ... A000217;
  3,  8, 15, 24, 35, 48,  63,  80,  99 ... A005563;
  2,  5,  9, 14, 20, 27,  35,  44,  54 ... A000096;
  5, 12, 21, 32, 45, 60,  77,  96, 117 ... A028347;
  3,  7, 12, 18, 25, 33,  42,  52,  63 ... A027379;
  7, 16, 27, 40, 55, 72,  91, 112, 135 ... A028560;
  4,  9, 15, 22, 30, 39,  49,  60,  72 ... A055999;
  9, 20, 33, 48, 65, 84, 105, 128, 153 ... A028566;
  5, 11, 18, 26, 35, 45,  56,  68,  81 ... A056000;
Antidiagonals begin as:
   1;
   3,  3;
   6,  8,  2;
  10, 15,  5,  5;
  15, 24,  9, 12,  3;
  21, 35, 14, 21,  7,  7;
  28, 48, 20, 32, 12, 16,  4;
  36, 63, 27, 45, 18, 27,  9,  9;
  45, 80, 35, 60, 25, 40, 15, 20,  5;
  55, 99, 44, 77, 33, 55, 22, 33, 11, 11;
		

Crossrefs

Row m of array: A000217 (m=1), A005563 (m=2), A000096 (m=3), A028347 (m=4), A027379 (m=5), A028560 (m=6), A055999 (m=7), A028566 (m=8), A056000 (m=9), A098603 (m=10), A056115 (m=11), A098847 (m=12), A056119 (m=13), A098848 (m=14), A056121 (m=15), A098849 (m=16), A056126 (m=17), A098850 (m=18), A051942 (m=19).
Column m of array: A026741 (m=1), A022998 (m=2), A165351 (m=3).

Programs

  • Magma
    A098832:= func< n,k | (1/4)*(3+(-1)^k)*(n+1)*(n-k+1) >;
    [A098832(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 31 2022
    
  • Mathematica
    A098832[n_, k_]:= (1/4)*(3+(-1)^k)*(n+1)*(n-k+1);
    Table[A098832[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 31 2022 *)
  • SageMath
    def A098832(n,k): return (1/4)*(3+(-1)^k)*(n+1)*(n-k+1)
    flatten([[A098832(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Jul 31 2022

Formula

Item m of row n of T is given (in infix form) by: n T m = n * (n + m) / (1 + m (mod 2)). E.g. Item 4 of row 3 of T: 3 T 4 = 14.
From G. C. Greubel, Jul 31 2022: (Start)
A(n, k) = (1/4)*(3 + (-1)^n)*k*(k+n) (array).
T(n, k) = (1/4)*(3 + (-1)^k)*(n+1)*(n-k+1) (antidiagonal triangle).
Sum_{k=1..n} T(n, k) = (1/8)*(n+1)*( (3*n-1)*(n+1) + (1+(-1)^n)/2 ).
T(2*n-1, n) = A181900(n).
T(2*n+1, n) = 2*A168509(n+1). (End)

Extensions

Missing terms added by G. C. Greubel, Jul 31 2022

A160467 a(n) = 1 if n is odd; otherwise, a(n) = 2^(k-1) where 2^k is the largest power of 2 that divides n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 32, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 16
Offset: 1

Views

Author

Johannes W. Meijer, May 24 2009, Jun 28 2011

Keywords

Comments

Fifth factor of the row sums A160466 of the Eta triangle A160464.
From Peter Luschny, May 31 2009: (Start)
Let odd(n) be the characteristic function of the odd numbers (A000035) and sigma(n) the number of 1's in binary expansion of n (A000120). Then a(n) = 2^(sigma(n-1) - sigma(n) + odd(n)).
Let B_{n} be the Bernoulli number. Then this sequence is also
a(n) = denominator(4*(4^n-1)*B_{2*n}/n). (End)

Crossrefs

Programs

  • Maple
    nmax:=96: p:= floor(log[2](nmax)): for n from 1 to nmax do a(n):=1 end do: for q from 1 to p do for n from 1 to nmax do if n mod 2^q = 0 then a(n):= 2^(q-1) end if: end do: end do: seq(a(n), n=1..nmax);
    From Peter Luschny, May 31 2009: (Start)
    a := proc(n) local sigma; sigma := proc(n) local i; add(i,i=convert(n,base,2)) end; 2^(sigma(n-1)-sigma(n)+`if`(type(n,odd),1,0)) end: seq(a(n), n=1..96);
    a := proc(n) denom(4*(4^n-1)*bernoulli(2*n)/n) end: seq(a(n), n=1..96); (End)
  • Mathematica
    a[n_] := If[OddQ[n], 1, 2^(IntegerExponent[n, 2] - 1)]; Array[a, 100] (* Amiram Eldar, Jul 02 2020 *)
  • PARI
    A160467(n) = 2^max(valuation(n,2)-1,0); \\ Antti Karttunen, Nov 18 2017, after Max Alekseyev's Feb 09 2011 formula.
    
  • Python
    def A160467(n): return max(1,(n&-n)>>1) # Chai Wah Wu, Jul 08 2022

Formula

a(n) = A026741(n)/A000265(n). - Paul Curtz, Apr 18 2010
a(n) = 2^max(A007814(n) - 1, 0). - Max Alekseyev, Feb 09 2011
a((2*n-1)*2^p) = A011782(p), p >= 0 and n >= 1. - Johannes W. Meijer, Jan 25 2013
a(n) = (1 + A140670(n))/2. - Antti Karttunen, Nov 18 2017
From Amiram Eldar, Dec 31 2022: (Start)
Dirichlet g.f.: zeta(s)*(2^s-2+1/2^s)/(2^s-2).
Sum_{k=1..n} a(k) ~ (1/(4*log(2)))*n*log(n) + (5/8 + (gamma-1)/(4*log(2)))*n, where gamma is Euler's constant (A001620). (End)
a(n) = A006519(n)/gcd(n,2). - Ridouane Oudra, Feb 08 2025
a(n) = A000010(A006519(n)). - Ridouane Oudra, Jul 27 2025

Extensions

Keyword mult added by Max Alekseyev, Feb 09 2011
Name changed by Antti Karttunen, Nov 18 2017

A165351 Numerator of 3*n/2.

Original entry on oeis.org

0, 3, 3, 9, 6, 15, 9, 21, 12, 27, 15, 33, 18, 39, 21, 45, 24, 51, 27, 57, 30, 63, 33, 69, 36, 75, 39, 81, 42, 87, 45, 93, 48, 99, 51, 105, 54, 111, 57, 117, 60, 123, 63, 129, 66, 135, 69, 141, 72, 147, 75, 153, 78, 159, 81, 165, 84, 171, 87, 177, 90, 183, 93, 189, 96, 195
Offset: 0

Views

Author

Paul Curtz, Sep 16 2009

Keywords

Comments

First trisection of A026741. The other trisections are A165355 and A165367.

Crossrefs

Cf. A000034 (denominator).

Programs

Formula

a(n) = A026741(3*n) = 3*A026741(n).
a(2n) = A008585(n).
a(2n+1) = A016945(n).
G.f.: 3*x*(1+x+x^2)/((1-x)^2 * (1+x)^2).
a(n) = numerator(3n/2). - Wesley Ivan Hurt, Oct 11 2013
a(n) = 3*n / (1 + ((n+1) mod 2)). - Wesley Ivan Hurt, Feb 25 2014
From G. C. Greubel, Jul 31 2022: (Start)
a(n) = 3*n*(3 - (-1)^n)/4.
E.g.f.: (3*x/2)*( 2*cosh(x) + sinh(x) ). (End)

Extensions

Edited and extended by R. J. Mathar, Sep 26 2009
New name from Wesley Ivan Hurt, Oct 13 2013

A227042 Triangle of denominators of harmonic mean of n and m, 1 <= m <= n.

Original entry on oeis.org

1, 3, 1, 2, 5, 1, 5, 3, 7, 1, 3, 7, 4, 9, 1, 7, 1, 1, 5, 11, 1, 4, 9, 5, 11, 6, 13, 1, 9, 5, 11, 3, 13, 7, 15, 1, 5, 11, 2, 13, 7, 5, 8, 17, 1, 11, 3, 13, 7, 3, 2, 17, 9, 19, 1, 6, 13, 7, 15, 8, 17, 9, 19, 10, 21, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jul 01 2013

Keywords

Comments

See the comments under A227041. a(n,m) gives the denominator of H(n,m) = 2*n*m/(n+m) in lowest terms.

Examples

			The triangle of denominators of H(n,m), called a(n,m) begins:
n\m  1   2   3   4   5    6    7    8    9   10  11 ...
1:   1
2:   3   1
3:   2   5   1
4:   5   3   7   1
5:   3   7   4   9   1
6:   7   1   1   5  11    1
7:   4   9   5  11   6   13    1
8;   9   5  11   3  13    7   15    1
9:   5  11   2  13   7    5    8   17    1
10: 11   3  13   7   3    2   17    9   19    1
11:  6  13   7  15   8   17    9   19   10   21   1
...
For the triangle of the rationals H(n,m) see the example section of A227041.
H(4,2) = denominator(16/6) = denominator(8/3) = 3 = 6/gcd(6,8) = 6/2.
		

Crossrefs

Cf. A227041, A026741 (column m=1), A000265 (m=2), A106619 (m=3), A227140(n+8) (m=4), A227108 (m=5), A221918/A221919.

Formula

a(n,m) = denominator(2*n*m/(n+m)), 1 <= m <= n.
a(n,m) = (n+m)/gcd(2*n*m, n+m) = (n+m)/gcd(n+m, 2*m^2), 1 <= m <= n.

A317311 Multiples of 11 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 11, 3, 22, 5, 33, 7, 44, 9, 55, 11, 66, 13, 77, 15, 88, 17, 99, 19, 110, 21, 121, 23, 132, 25, 143, 27, 154, 29, 165, 31, 176, 33, 187, 35, 198, 37, 209, 39, 220, 41, 231, 43, 242, 45, 253, 47, 264, 49, 275, 51, 286, 53, 297, 55, 308, 57, 319, 59, 330, 61, 341, 63, 352, 65, 363, 67, 374, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 15-gonal numbers (A277082).
a(n) is also the length of the n-th line segment of the rectangular spiral wh0se vertices are the generalized 15-gonal numbers.

Crossrefs

Cf. A008593 and A005408 interleaved.
Column 11 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A277082.

Programs

  • Mathematica
    {0}~Join~Riffle[2 Range@ # - 1, 11 Range@ #] &@ 35 (* or *)
    CoefficientList[Series[x (1 + 11 x + x^2)/((1 - x)^2*(1 + x)^2), {x, 0, 69}], x] (* Michael De Vlieger, Jul 26 2018 *)
    LinearRecurrence[{0,2,0,-1},{0,1,11,3},90] (* Harvey P. Dale, Aug 28 2022 *)
  • PARI
    concat(0, Vec(x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 26 2018

Formula

a(2n) = 11*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 26 2018: (Start)
G.f.: x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 11*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 9/2^s). - Amiram Eldar, Oct 25 2023
a(n) = (13 + 9*(-1)^n)*n/4. - Aaron J Grech, Aug 20 2024

A328203 Expansion of Sum_{k>=1} k * x^k / (1 - x^(2*k))^2.

Original entry on oeis.org

1, 2, 5, 4, 8, 10, 11, 8, 20, 16, 17, 20, 20, 22, 42, 16, 26, 40, 29, 32, 58, 34, 35, 40, 53, 40, 74, 44, 44, 84, 47, 32, 90, 52, 94, 80, 56, 58, 106, 64, 62, 116, 65, 68, 174, 70, 71, 80, 102, 106, 138, 80, 80, 148, 146, 88, 154, 88, 89, 168, 92, 94, 241, 64, 172
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 07 2019

Keywords

Crossrefs

Programs

  • Magma
    a:=[]; for k in [1..65] do if IsOdd(k) then a[k]:=(k * #Divisors(k) + DivisorSigma(1,k)) / 2; else a[k]:=(k * (#Divisors(k) - #Divisors(k div 2)) + DivisorSigma(1,k) - DivisorSigma(1,k div 2)) / 2;  end if; end for; a; // Marius A. Burtea, Oct 07 2019
    
  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[k x^k/(1 - x^(2 k))^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, (n Mod[#, 2] + Boole[OddQ[n/#]] #)/2 &]; Table[a[n], {n, 1, 65}]
  • PARI
    A328203(n) = if(n%2,(1/2)*(sigma(n)+(n*numdiv(n))),2*A328203(n/2)); \\ Antti Karttunen, Nov 13 2021

Formula

a(n) = (n * d(n) + sigma(n)) / 2 if n odd, (n * (d(n) - d(n/2)) + sigma(n) - sigma(n/2)) / 2 if n even.
a(n) = (n * A001227(n) + A002131(n)) / 2.
a(2*n) = 2 * a(n).
From Antti Karttunen, Nov 13 2021: (Start)
The following two convolutions were found by Jon Maiga's Sequence Machine search algorithm. Both are easy to prove:
a(n) = Sum_{d|n} A003602(d) * A026741(n/d).
a(n) = Sum_{d|n} A109168(d) * A193356(n/d), where A109168(d) = A140472(d) = (d+A006519(d))/2.
(End)
Previous Showing 71-80 of 205 results. Next