cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 63 results. Next

A014915 a(1)=1, a(n) = n*3^(n-1) + a(n-1).

Original entry on oeis.org

1, 7, 34, 142, 547, 2005, 7108, 24604, 83653, 280483, 930022, 3055786, 9964519, 32285041, 104029576, 333612088, 1065406345, 3389929279, 10750918570, 33996147910, 107218620331, 337346390797, 1059110761804, 3318547053652, 10379285465677, 32408789311195, 101039166676078
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [((2*n - 1)*3^n + 1)/4: n in [1..30]]; // Vincenzo Librandi, Jun 09 2011
  • Mathematica
    LinearRecurrence[{7, -15, 9}, {1, 7, 34}, 25] (* L. Edson Jeffery, May 08 2015 *)

Formula

From Henry Bottomley, Dec 18 2000: (Start)
a(n) = ((2*n-1)*3^n + 1)/4.
a(n) = 7*a(n-1) - 15*a(n-2) + 9*a(n-3) for n > 3.
a(n) = 1 + 2*3 + 3*3^2 + .. + n*3^(n-1).
a(n) = a(n-1) + A027471(n+1). (End)
G.f.: x/((1-x)*(1-3*x)^2). - Colin Barker, Jul 28 2012
a(n) = f^n(n)/2 with f(x) = 3*x-1. - Glen Gilchrist, Apr 10 2019
E.g.f.: exp(x)*(1 + exp(2*x)*(6*x - 1))/4. - Stefano Spezia, May 14 2024
a(n) = 6*a(n-1) - 9*a(n-2) + 1 for n > 2. - Elmo R. Oliveira, May 24 2025

A036219 Expansion of 1/(1-3*x)^6; 6-fold convolution of A000244 (powers of 3).

Original entry on oeis.org

1, 18, 189, 1512, 10206, 61236, 336798, 1732104, 8444007, 39405366, 177324147, 773778096, 3288556908, 13660159464, 55616363532, 222465454128, 875957725629, 3400777052442, 13036312034361, 49400761393368, 185252855225130, 688082033693340, 2533392942234570
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), this sequence (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Magma
    [3^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
  • Maple
    seq(3^n*binomial(n+5,5), n=0..30); # Zerinvary Lajos, Jun 13 2008
  • Mathematica
    Table[3^n*Binomial[n+5, 5], {n, 0, 30}] (* G. C. Greubel, May 19 2021 *)
    CoefficientList[Series[1/(1-3x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {18,-135,540,-1215,1458,-729},{1,18,189,1512,10206,61236},30] (* Harvey P. Dale, Jan 02 2022 *)
  • Sage
    [3^n*binomial(n+5,5) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
    

Formula

a(n) = 3^n*binomial(n+5, 5).
a(n) = A027465(n+6, 6).
G.f.: 1/(1-3*x)^6.
E.g.f.: (1/40)*(40 + 600*x + 1800*x^2 + 1800*x^3 + 675*x^4 + 81*x^5)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 240*log(3/2) - 385/4.
Sum_{n>=0} (-1)^n/a(n) = 3840*log(4/3) - 4415/4. (End)

A036220 Expansion of 1/(1-3*x)^7; 7-fold convolution of A000244 (powers of 3).

Original entry on oeis.org

1, 21, 252, 2268, 17010, 112266, 673596, 3752892, 19702683, 98513415, 472864392, 2192371272, 9865670724, 43257171636, 185387878440, 778629089448, 3211844993973, 13036312034361, 52145248137444, 205836505805700, 802762372642230, 3096369151620030
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), this sequence (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Magma
    [3^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
  • Maple
    seq(3^n*binomial(n+6,6), n=0..20); # Zerinvary Lajos, Jun 16 2008
  • Mathematica
    Table[3^n*Binomial[n+6, 6], {n,0,30}] (* G. C. Greubel, May 19 2021 *)
  • Sage
    [3^n*binomial(n+6,6) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
    

Formula

a(n) = 3^n*binomial(n+6, 6).
a(n) = A027465(n+7,7).
G.f.: 1/(1-3*x)^7.
E.g.f.: (1/80)*(80 + 1440*x + 5400*x^2 + 7200*x^3 + 4050*x^4 + 972*x^5 + 81*x^6)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 1173/5 - 576*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 18432*log(4/3) - 26508/5. (End)

A061593 Number of ways to place 2n nonattacking kings on a 4 X 2n chessboard.

Original entry on oeis.org

12, 79, 408, 1847, 7698, 30319, 114606, 419933, 1501674, 5266069, 18174084, 61892669, 208424880, 695179339, 2299608732, 7552444115, 24648046806, 79994460139, 258339007890, 830619734681, 2660070154542, 8488515938929, 27000079296648, 85629004867577
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001

Keywords

Crossrefs

Column k=2 of A350819.

Programs

  • Magma
    [(17*n-109)*3^n+2*Fibonacci(2*n+10): n in [1..30]]; // Vincenzo Librandi, Jul 12 2011
  • Maple
    with(combinat): A061593:=n->(17*n-109)*3^n+2*fibonacci(2*n+10): seq(A061593(n), n=1..30); # Wesley Ivan Hurt, Nov 08 2014
  • Mathematica
    Table[(17 n - 109)*3^n + 2 Fibonacci[2 n + 10], {n, 30}] (* Wesley Ivan Hurt, Nov 08 2014 *)
    CoefficientList[Series[x (12-29x+33x^2-9x^3)/((1-3x+x^2)(1-3x)^2),{x,0,30}],x] (* or *) LinearRecurrence[{9,-28,33,-9},{0,12,79,408,1847},30] (* Harvey P. Dale, Dec 20 2021 *)

Formula

G.f.: x*(12-29*x+33*x^2-9*x^3)/((1-3*x+x^2)*(1-3*x)^2).
a(n) = 9*a(n-1) - 28*a(n-2) + 33*a(n-3) - 9*a(n-4); a(1)=12, a(2)=79, a(3)=408, a(4)=1847.
a(n) = (17*n-109)*3^n + 2*Fibonacci(2*n+10).
a(n) = 17*A027471(n+2) - 126*A000244(n) + A025169(n+4).

A036221 Expansion of 1/(1-3*x)^8; 8-fold convolution of A000244 (powers of 3).

Original entry on oeis.org

1, 24, 324, 3240, 26730, 192456, 1250964, 7505784, 42220035, 225173520, 1148384952, 5637526128, 26778249108, 123591918960, 556163635320, 2447119995408, 10553204980197, 44695926974952, 186233029062300
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of n-permutations (n>=7) of 4 objects: u, v, z, x with repetition allowed, containing exactly seven (7) u's. Example: a(1)=24 because we have uuuuuuuv, uuuuuuuz, uuuuuuux, uuuuuuvu, uuuuuuzu, uuuuuuxu, uuuuuvuu, uuuuuzuu, uuuuuxuu, uuuuvuuu, uuuuzuuu, uuuuxuuu, uuuvuuuu, uuuzuuuu, uuuxuuuu, uuvuuuuu, uuzuuuuu, uuxuuuuu, uvuuuuuu, uzuuuuuu, uxuuuuuu, vuuuuuuu, zuuuuuuu, xuuuuuuu. - Zerinvary Lajos, Jun 23 2008

Crossrefs

Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), this sequence (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Magma
    [3^n*Binomial(n+7, 7): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
  • Maple
    seq(3^n*binomial(n+7,7), n=0..30); # Zerinvary Lajos, Jun 23 2008
  • Mathematica
    Table[3^n*Binomial[n+7,7], {n,0,30}] (* G. C. Greubel, May 19 2021 *)
  • Sage
    [3^n*binomial(n+7, 7) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 3^n*binomial(n+7, 7).
a(n) = A027465(n+8, 8.)
G.f.: 1/(1-3*x)^8.
E.g.f.: (1/560)*(560 +11760*x +52920*x^2 +88200*x^3 +66150*x^4 +23814*x^5 +3969*x^6 +243*x^7)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 1344*log(3/2) - 5439/10.
Sum_{n>=0} (-1)^n/a(n) = 86016*log(4/3) - 247443/10. (End)

A036222 Expansion of 1/(1-3*x)^9; 9-fold convolution of A000244 (powers of 3).

Original entry on oeis.org

1, 27, 405, 4455, 40095, 312741, 2189187, 14073345, 84440070, 478493730, 2583866142, 13389124554, 66945622770, 324428787270, 1529449997130, 7035469986798, 31659614940591, 139674771796725, 605257344452475
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of n-permutations (n>=8) of 4 objects: u, v, z, x with repetition allowed, containing exactly eight (8) u's. Example: a(1)=27 because we have uuuuuuuuv, uuuuuuuuz, uuuuuuuux, uuuuuuuvu, uuuuuuuzu, uuuuuuuxu, uuuuuuvuu, uuuuuuzuu, uuuuuuxuu, uuuuuvuuu, uuuuuzuuu, uuuuuxuuu, uuuuvuuuu, uuuuzuuuu, uuuuxuuuu, uuuvuuuuu, uuuzuuuuu, uuuxuuuuu, uuvuuuuuu, uuzuuuuuu, uuxuuuuuu, uvuuuuuuu, uzuuuuuuu, uxuuuuuuu, vuuuuuuuu, zuuuuuuuu, xuuuuuuuu. - Zerinvary Lajos, Jun 23 2008

Crossrefs

Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), this sequence (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Magma
    [3^n*Binomial(n+8, 8): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
  • Maple
    seq(3^n*binomial(n+8,8), n=0..18); # Zerinvary Lajos, Jun 23 2008
  • Mathematica
    Table[3^n*Binomial[n+8, 8], {n, 0, 20}] (* Zerinvary Lajos, Jan 31 2010 *)
    CoefficientList[Series[1/(1-3x)^9,{x,0,30}],x] (* or *) LinearRecurrence[{27,-324, 2268,-10206,30618,-61236,78732,-59049,19683}, {1,27,405,4455,40095,312741, 2189187,14073345,84440070}, 30] (* Harvey P. Dale, Jan 07 2016 *)
  • Sage
    [3^n*binomial(n+8, 8) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 3^n*binomial(n+8, 8).
a(n) = A027465(n+9, 9).
G.f.: 1/(1-3*x)^9.
a(0)=1, a(1)=27, a(2)=405, a(3)=4455, a(4)=40095, a(5)=312741, a(6)=2189187, a(7)=14073345, a(8)=84440070, a(n) = 27*a(n-1) - 324*a(n-2) + 2268*a(n-3) - 10206*a(n-4) + 30618*a(n-5) - 61236*a(n-6) + 78732*a(n-7) - 59049*a(n-8) + 19683*a(n-9). - Harvey P. Dale, Jan 07 2016
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 43632/35 - 3072*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 393216*log(4/3) - 3959208/35. (End)

A036223 Expansion of 1/(1-3*x)^10; 10-fold convolution of A000244 (powers of 3).

Original entry on oeis.org

1, 30, 495, 5940, 57915, 486486, 3648645, 25019280, 159497910, 956987460, 5454828522, 29753610120, 156206453130, 793048146660, 3908594437110, 18761253298128, 87943374834975, 403504896301650, 1815772033357425
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of n-permutations (n >= 9) of 4 objects: u, v, z, x with repetition allowed, containing exactly nine (9) u's. - Zerinvary Lajos, Jul 02 2008

Crossrefs

Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), this sequence (m=9), A172362 (m=10).

Programs

  • Magma
    [3^n*Binomial(n+9, 9): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
  • Maple
    seq(3^n*binomial(n+9, 9), n=0..20); # Zerinvary Lajos, Jul 02 2008
  • Mathematica
    Table[3^n*Binomial[n+9,9], {n,0,30}] (* G. C. Greubel, May 18 2021 *)
    CoefficientList[Series[1/(1-3x)^10,{x,0,30}],x] (* or *) LinearRecurrence[ {30,-405,3240,-17010,61236,-153090,262440,-295245,196830,-59049},{1,30,495,5940,57915,486486,3648645,25019280,159497910,956987460},30] (* Harvey P. Dale, Jan 16 2022 *)
  • Sage
    [3^n*binomial(n+9,9) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 3^n*binomial(n+9, 9).
a(n) = A027465(n+10, 10).
G.f.: 1/(1-3*x)^10.
E.g.f.: (4480 + 120960*x + 725760*x^2 + 1693440*x^3 + 1905120*x^4 + 1143072*x^5 + 381024*x^6 + 69984*x^7 + 6561*x^8 + 243*x^9)*exp(3*x)/4480. - G. C. Greubel, May 18 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 6912*log(3/2) - 784431/280.
Sum_{n>=0} (-1)^n/a(n) = 1769472*log(4/3) - 142532433/280. (End)

A038221 Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*3^j.

Original entry on oeis.org

1, 3, 3, 9, 18, 9, 27, 81, 81, 27, 81, 324, 486, 324, 81, 243, 1215, 2430, 2430, 1215, 243, 729, 4374, 10935, 14580, 10935, 4374, 729, 2187, 15309, 45927, 76545, 76545, 45927, 15309, 2187, 6561, 52488, 183708, 367416, 459270, 367416, 183708, 52488, 6561
Offset: 0

Views

Author

Keywords

Comments

Triangle of coefficients in expansion of (3 + 3x)^n = 3^n (1 +x)^n, where n is a nonnegative integer. (Coefficients in expansion of (1 +x)^n are given in A007318: Pascal's triangle). - Zagros Lalo, Jul 23 2018

Examples

			Triangle begins as:
     1;
     3,     3;
     9,    18,      9;
    27,    81,     81,     27;
    81,   324,    486,    324,     81;
   243,  1215,   2430,   2430,   1215,    243;
   729,  4374,  10935,  14580,  10935,   4374,    729;
  2187, 15309,  45927,  76545,  76545,  45927,  15309,  2187;
  6561, 52488, 183708, 367416, 459270, 367416, 183708, 52488, 6561;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48

Crossrefs

Columns k: A000244 (k=0), 3*A027471 (k=1), 3^2*A027472 (k=2), 3^3*A036216 (k=3), 3^4*A036217 (k=4), 3^5*A036219 (k=5), 3^6*A036220 (k=6), 3^7*A036221 (k=7), 3^8*A036222 (k=8), 3^9*A036223 (k=9), 3^10*A172362 (k=10).

Programs

  • GAP
    Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*3^(i-j)*3^j))); # Muniru A Asiru, Jul 23 2018
    
  • Haskell
    a038221 n = a038221_list !! n
    a038221_list = concat $ iterate ([3,3] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Magma
    [3^n*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 17 2022
    
  • Mathematica
    (* programs from Zagros Lalo, Jul 23 2018 *)
    t[0, 0]=1; t[n_, k_]:= t[n, k]= If[n<0 || k<0, 0, 3 t[n-1, k] + 3 t[n-1, k-1]]; Table[t[n, k], {n,0,10}, {k,0,n}]//Flatten
    Table[CoefficientList[Expand[3^n *(1+x)^n], x], {n,0,10}]//Flatten
    Table[3^n Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten  (* End *)
  • SageMath
    def A038221(n,k): return 3^n*binomial(n,k)
    flatten([[A038221(n,k) for k in range(n+1)] for n in range(10)]) # G. C. Greubel, Oct 17 2022

Formula

G.f.: 1/(1 - 3*x - 3*x*y). - Ilya Gutkovskiy, Apr 21 2017
T(0,0) = 1; T(n,k) = 3 T(n-1,k) + 3 T(n-1,k-1) for k = 0...n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 23 2018
From G. C. Greubel, Oct 17 2022: (Start)
T(n, k) = T(n, n-k).
T(n, n) = A000244(n).
T(n, n-1) = 3*A027471(n).
T(n, n-2) = 9*A027472(n+1).
T(n, n-3) = 27*A036216(n-3).
T(n, n-4) = 81*A036217(n-4).
T(n, n-5) = 243*A036219(n-5).
Sum_{k=0..n} T(n, k) = A000400(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A030195(n+1), n >= 0.
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A057083(n).
T(n, k) = 3^k * A027465(n, k). (End)

A053469 a(n) = n*6^(n-1).

Original entry on oeis.org

1, 12, 108, 864, 6480, 46656, 326592, 2239488, 15116544, 100776960, 665127936, 4353564672, 28298170368, 182849716224, 1175462461440, 7522959753216, 47958868426752, 304679870005248, 1929639176699904, 12187194800209920, 76779327241322496, 482612914088312832
Offset: 1

Views

Author

Barry E. Williams, Jan 13 2000

Keywords

Comments

Binomial transform of A053464. - R. J. Mathar, Oct 26 2011

Examples

			G.f. = x + 12*x^2 + 108*x^3 + 864*x^4 + 6480*x^5 + 46656*x^6 + ... - _Michael Somos_, Dec 16 2019
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

Formula

a(n) = 12*a(n-1) - 36*a(n-2), n>=3.
G.f.: x/(6x-1)^2. - Zerinvary Lajos, Apr 28 2009
E.g.f.: x*exp(6*x). - Michael Somos, Dec 16 2019
From Amiram Eldar, Oct 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 6*log(6/5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*log(7/6). (End)

Extensions

More terms from James Sellers, Feb 02 2000
More terms from Zerinvary Lajos, Oct 02 2007

A212697 a(n) = 2*n*3^(n-1).

Original entry on oeis.org

2, 12, 54, 216, 810, 2916, 10206, 34992, 118098, 393660, 1299078, 4251528, 13817466, 44641044, 143489070, 459165024, 1463588514, 4649045868, 14721978582, 46490458680, 146444944842, 460255540932, 1443528742014, 4518872583696, 14121476824050, 44059007691036
Offset: 1

Views

Author

Stanislav Sykora, May 24 2012

Keywords

Comments

Main transitions in systems of n particles with spin 1.
Consider the set S of all b^n numbers which have n digits in base b. Define as "main transition" a pair (x,y) of elements of S such that x and y differ in base b in only one digit which in y exceeds that in x by 1. This particular sequence a(n) gives the number of such transitions for the case b=3.
The terminology originates from quantum theory of coupled spin systems (such as in magnetic resonance) with n particles, each with spin S = (b-1)/2. Then the i-th digit's value in base b can be intended as a label for the b = 2S+1 quantum states of the i-th particle. The most intense main quantum transitions then correspond to the above definition. Due to continuity, the correspondence holds regardless of how strongly coupled are the particles among themselves.
a(n) is the number of functions from {1,2,...,n} into {1,2,3} with a specially designated element of the domain that is restricted to be mapped into {1,2}. Hence the e.g.f. is 2*x*exp(x)^3. - Geoffrey Critzer, Mar 01 2015
a(n) is the distance spectral radius of the dimension-regular generalized recursive circulant graph (commonly known as multiplicative circulant graph) of order 3^n. - John Rafael M. Antalan, Sep 25 2020

Examples

			n=2, b=3, S={00, 01, 02, 10, 11, 12, 20, 21, 22}, main transitions = {(00,01), (00,10), (01,02), (01,12), (02,12), (10,11), (10,20), (11,12), (11,21), (12,22), (20,21), (21,22)}, main transitions count = 12.
		

References

  • M. H. Levitt, Spin Dynamics, Basics of Nuclear Magnetic Resonance, 2nd Edition, John Wiley & Sons, 2007, Section 6 (Mathematical techniques).
  • J. A. Pople, W. G. Schneider, H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.

Crossrefs

Cf. A001787 (b = 2).
Cf. A212698, A212699, A212700, A212701, A212702, A212703, A212704 (b = 4, 5, 6, 7, 8, 9, 10).
Row n=3 of A258997.

Programs

  • GAP
    List([1..30], n-> 2*3^(n-1)*n) # G. C. Greubel, Jun 08 2019
  • Magma
    [2*3^(n-1)*n: n in [1..30]]; // G. C. Greubel, Jun 08 2019
    
  • Maple
    A212697:=n->2*n*3^(n-1): seq(A212697(n), n=1..30); # Wesley Ivan Hurt, Mar 01 2015
  • Mathematica
    Table[Sum[Binomial[n, j] j 2^j, {j, n}], {n, 30}] (* Geoffrey Critzer, Mar 01 2015 *)
    Table[2*3^(n-1)*n, {n,30}] (* G. C. Greubel, Jun 08 2019 *)
  • PARI
    mtrans(n,b) = n*(b-1)*b^(n-1);
    for (n=1,100,write("b212697.txt",n," ",mtrans(n,3)))
    
  • Sage
    [2*3^(n-1)*n for n in (1..30)] # G. C. Greubel, Jun 08 2019
    

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=3.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 2*x/(1-3*x)^2.
a(n) = 2*A027471(n+1). (End)
a(n) = A005843(n)*A000244(n-1). - Omar E. Pol, Jan 21 2014
a(n) = Sum_{j=1..n} binomial(n,j)*j*2^j. - Geoffrey Critzer, Mar 01 2015
E.g.f.: 2*x*exp(3*x). - G. C. Greubel, Jun 08 2019
Previous Showing 11-20 of 63 results. Next