A014915
a(1)=1, a(n) = n*3^(n-1) + a(n-1).
Original entry on oeis.org
1, 7, 34, 142, 547, 2005, 7108, 24604, 83653, 280483, 930022, 3055786, 9964519, 32285041, 104029576, 333612088, 1065406345, 3389929279, 10750918570, 33996147910, 107218620331, 337346390797, 1059110761804, 3318547053652, 10379285465677, 32408789311195, 101039166676078
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..600
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 14.
- Alexander V. Kitaev, Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin, arXiv:1809.00122 [math.CA], 2018.
- Index entries for linear recurrences with constant coefficients, signature (7,-15,9).
A036219
Expansion of 1/(1-3*x)^6; 6-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 18, 189, 1512, 10206, 61236, 336798, 1732104, 8444007, 39405366, 177324147, 773778096, 3288556908, 13660159464, 55616363532, 222465454128, 875957725629, 3400777052442, 13036312034361, 49400761393368, 185252855225130, 688082033693340, 2533392942234570
Offset: 0
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2),
A036216 (m=3),
A036217 (m=4), this sequence (m=5),
A036220 (m=6),
A036221 (m=7),
A036222 (m=8),
A036223 (m=9),
A172362 (m=10).
-
[3^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(3^n*binomial(n+5,5), n=0..30); # Zerinvary Lajos, Jun 13 2008
-
Table[3^n*Binomial[n+5, 5], {n, 0, 30}] (* G. C. Greubel, May 19 2021 *)
CoefficientList[Series[1/(1-3x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {18,-135,540,-1215,1458,-729},{1,18,189,1512,10206,61236},30] (* Harvey P. Dale, Jan 02 2022 *)
-
[3^n*binomial(n+5,5) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
A036220
Expansion of 1/(1-3*x)^7; 7-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 21, 252, 2268, 17010, 112266, 673596, 3752892, 19702683, 98513415, 472864392, 2192371272, 9865670724, 43257171636, 185387878440, 778629089448, 3211844993973, 13036312034361, 52145248137444, 205836505805700, 802762372642230, 3096369151620030
Offset: 0
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2),
A036216 (m=3),
A036217 (m=4),
A036219 (m=5), this sequence (m=6),
A036221 (m=7),
A036222 (m=8),
A036223 (m=9),
A172362 (m=10).
-
[3^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(3^n*binomial(n+6,6), n=0..20); # Zerinvary Lajos, Jun 16 2008
-
Table[3^n*Binomial[n+6, 6], {n,0,30}] (* G. C. Greubel, May 19 2021 *)
-
[3^n*binomial(n+6,6) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
A061593
Number of ways to place 2n nonattacking kings on a 4 X 2n chessboard.
Original entry on oeis.org
12, 79, 408, 1847, 7698, 30319, 114606, 419933, 1501674, 5266069, 18174084, 61892669, 208424880, 695179339, 2299608732, 7552444115, 24648046806, 79994460139, 258339007890, 830619734681, 2660070154542, 8488515938929, 27000079296648, 85629004867577
Offset: 1
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001
- Bruno Berselli, Table of n, a(n) for n = 1..200
- D. E. Knuth, Nonattacking kings on a chessboard, 1994.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 90.
- H. S. Wilf, The problem of the kings, Elec. J. Combin. 2, 1995.
- Index entries for linear recurrences with constant coefficients, signature (9,-28,33,-9).
-
[(17*n-109)*3^n+2*Fibonacci(2*n+10): n in [1..30]]; // Vincenzo Librandi, Jul 12 2011
-
with(combinat): A061593:=n->(17*n-109)*3^n+2*fibonacci(2*n+10): seq(A061593(n), n=1..30); # Wesley Ivan Hurt, Nov 08 2014
-
Table[(17 n - 109)*3^n + 2 Fibonacci[2 n + 10], {n, 30}] (* Wesley Ivan Hurt, Nov 08 2014 *)
CoefficientList[Series[x (12-29x+33x^2-9x^3)/((1-3x+x^2)(1-3x)^2),{x,0,30}],x] (* or *) LinearRecurrence[{9,-28,33,-9},{0,12,79,408,1847},30] (* Harvey P. Dale, Dec 20 2021 *)
A036221
Expansion of 1/(1-3*x)^8; 8-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 24, 324, 3240, 26730, 192456, 1250964, 7505784, 42220035, 225173520, 1148384952, 5637526128, 26778249108, 123591918960, 556163635320, 2447119995408, 10553204980197, 44695926974952, 186233029062300
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (24,-252,1512,-5670,13608,-20412,17496,-6561).
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2),
A036216 (m=3),
A036217 (m=4),
A036219 (m=5),
A036220 (m=6), this sequence (m=7),
A036222 (m=8),
A036223 (m=9),
A172362 (m=10).
-
[3^n*Binomial(n+7, 7): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(3^n*binomial(n+7,7), n=0..30); # Zerinvary Lajos, Jun 23 2008
-
Table[3^n*Binomial[n+7,7], {n,0,30}] (* G. C. Greubel, May 19 2021 *)
-
[3^n*binomial(n+7, 7) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
A036222
Expansion of 1/(1-3*x)^9; 9-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 27, 405, 4455, 40095, 312741, 2189187, 14073345, 84440070, 478493730, 2583866142, 13389124554, 66945622770, 324428787270, 1529449997130, 7035469986798, 31659614940591, 139674771796725, 605257344452475
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (27,-324,2268,-10206,30618,-61236,78732,-59049,19683).
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2),
A036216 (m=3),
A036217 (m=4),
A036219 (m=5),
A036220 (m=6),
A036221 (m=7), this sequence (m=8),
A036223 (m=9),
A172362 (m=10).
-
[3^n*Binomial(n+8, 8): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(3^n*binomial(n+8,8), n=0..18); # Zerinvary Lajos, Jun 23 2008
-
Table[3^n*Binomial[n+8, 8], {n, 0, 20}] (* Zerinvary Lajos, Jan 31 2010 *)
CoefficientList[Series[1/(1-3x)^9,{x,0,30}],x] (* or *) LinearRecurrence[{27,-324, 2268,-10206,30618,-61236,78732,-59049,19683}, {1,27,405,4455,40095,312741, 2189187,14073345,84440070}, 30] (* Harvey P. Dale, Jan 07 2016 *)
-
[3^n*binomial(n+8, 8) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
A036223
Expansion of 1/(1-3*x)^10; 10-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 30, 495, 5940, 57915, 486486, 3648645, 25019280, 159497910, 956987460, 5454828522, 29753610120, 156206453130, 793048146660, 3908594437110, 18761253298128, 87943374834975, 403504896301650, 1815772033357425
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (30,-405,3240,-17010,61236,-153090,262440,-295245,196830,-59049).
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2),
A036216 (m=3),
A036217 (m=4),
A036219 (m=5),
A036220 (m=6),
A036221 (m=7),
A036222 (m=8), this sequence (m=9),
A172362 (m=10).
-
[3^n*Binomial(n+9, 9): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(3^n*binomial(n+9, 9), n=0..20); # Zerinvary Lajos, Jul 02 2008
-
Table[3^n*Binomial[n+9,9], {n,0,30}] (* G. C. Greubel, May 18 2021 *)
CoefficientList[Series[1/(1-3x)^10,{x,0,30}],x] (* or *) LinearRecurrence[ {30,-405,3240,-17010,61236,-153090,262440,-295245,196830,-59049},{1,30,495,5940,57915,486486,3648645,25019280,159497910,956987460},30] (* Harvey P. Dale, Jan 16 2022 *)
-
[3^n*binomial(n+9,9) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
A038221
Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*3^j.
Original entry on oeis.org
1, 3, 3, 9, 18, 9, 27, 81, 81, 27, 81, 324, 486, 324, 81, 243, 1215, 2430, 2430, 1215, 243, 729, 4374, 10935, 14580, 10935, 4374, 729, 2187, 15309, 45927, 76545, 76545, 45927, 15309, 2187, 6561, 52488, 183708, 367416, 459270, 367416, 183708, 52488, 6561
Offset: 0
Triangle begins as:
1;
3, 3;
9, 18, 9;
27, 81, 81, 27;
81, 324, 486, 324, 81;
243, 1215, 2430, 2430, 1215, 243;
729, 4374, 10935, 14580, 10935, 4374, 729;
2187, 15309, 45927, 76545, 76545, 45927, 15309, 2187;
6561, 52488, 183708, 367416, 459270, 367416, 183708, 52488, 6561;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
Columns k:
A000244 (k=0), 3*
A027471 (k=1), 3^2*
A027472 (k=2), 3^3*
A036216 (k=3), 3^4*
A036217 (k=4), 3^5*
A036219 (k=5), 3^6*
A036220 (k=6), 3^7*
A036221 (k=7), 3^8*
A036222 (k=8), 3^9*
A036223 (k=9), 3^10*
A172362 (k=10).
-
Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*3^(i-j)*3^j))); # Muniru A Asiru, Jul 23 2018
-
a038221 n = a038221_list !! n
a038221_list = concat $ iterate ([3,3] *) [1]
instance Num a => Num [a] where
fromInteger k = [fromInteger k]
(p:ps) + (q:qs) = p + q : ps + qs
ps + qs = ps ++ qs
(p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
* = []
-- Reinhard Zumkeller, Apr 02 2011
-
[3^n*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 17 2022
-
(* programs from Zagros Lalo, Jul 23 2018 *)
t[0, 0]=1; t[n_, k_]:= t[n, k]= If[n<0 || k<0, 0, 3 t[n-1, k] + 3 t[n-1, k-1]]; Table[t[n, k], {n,0,10}, {k,0,n}]//Flatten
Table[CoefficientList[Expand[3^n *(1+x)^n], x], {n,0,10}]//Flatten
Table[3^n Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten (* End *)
-
def A038221(n,k): return 3^n*binomial(n,k)
flatten([[A038221(n,k) for k in range(n+1)] for n in range(10)]) # G. C. Greubel, Oct 17 2022
A053469
a(n) = n*6^(n-1).
Original entry on oeis.org
1, 12, 108, 864, 6480, 46656, 326592, 2239488, 15116544, 100776960, 665127936, 4353564672, 28298170368, 182849716224, 1175462461440, 7522959753216, 47958868426752, 304679870005248, 1929639176699904, 12187194800209920, 76779327241322496, 482612914088312832
Offset: 1
G.f. = x + 12*x^2 + 108*x^3 + 864*x^4 + 6480*x^5 + 46656*x^6 + ... - _Michael Somos_, Dec 16 2019
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[n*(6^(n-1)): n in [1..30]]; // Vincenzo Librandi, Jun 09 2011
-
f[n_]:=n*6^(n-1);f[Range[40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{12,-36},{1,12},20] (* Harvey P. Dale, Apr 28 2015 *)
-
a(n)=n*6^(n-1) \\ Charles R Greathouse IV, Oct 07 2015
-
[lucas_number1(n,12,36) for n in range(1, 21)] # Zerinvary Lajos, Apr 28 2009
A212697
a(n) = 2*n*3^(n-1).
Original entry on oeis.org
2, 12, 54, 216, 810, 2916, 10206, 34992, 118098, 393660, 1299078, 4251528, 13817466, 44641044, 143489070, 459165024, 1463588514, 4649045868, 14721978582, 46490458680, 146444944842, 460255540932, 1443528742014, 4518872583696, 14121476824050, 44059007691036
Offset: 1
n=2, b=3, S={00, 01, 02, 10, 11, 12, 20, 21, 22}, main transitions = {(00,01), (00,10), (01,02), (01,12), (02,12), (10,11), (10,20), (11,12), (11,21), (12,22), (20,21), (21,22)}, main transitions count = 12.
- M. H. Levitt, Spin Dynamics, Basics of Nuclear Magnetic Resonance, 2nd Edition, John Wiley & Sons, 2007, Section 6 (Mathematical techniques).
- J. A. Pople, W. G. Schneider, H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- John Rafael M. Antalan and Francis Joseph H. Campeña, Distance eigenvalues and forwarding indices of dimension-regular generalized recursive circulant graph of order power of two and three, arXiv:2009.11608[math.CO], 2020.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
Cf.
A212698,
A212699,
A212700,
A212701,
A212702,
A212703,
A212704 (b = 4, 5, 6, 7, 8, 9, 10).
-
List([1..30], n-> 2*3^(n-1)*n) # G. C. Greubel, Jun 08 2019
-
[2*3^(n-1)*n: n in [1..30]]; // G. C. Greubel, Jun 08 2019
-
A212697:=n->2*n*3^(n-1): seq(A212697(n), n=1..30); # Wesley Ivan Hurt, Mar 01 2015
-
Table[Sum[Binomial[n, j] j 2^j, {j, n}], {n, 30}] (* Geoffrey Critzer, Mar 01 2015 *)
Table[2*3^(n-1)*n, {n,30}] (* G. C. Greubel, Jun 08 2019 *)
-
mtrans(n,b) = n*(b-1)*b^(n-1);
for (n=1,100,write("b212697.txt",n," ",mtrans(n,3)))
-
[2*3^(n-1)*n for n in (1..30)] # G. C. Greubel, Jun 08 2019
Comments