cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 59 results. Next

A108495 a(n) = (n^7 - n)/6.

Original entry on oeis.org

0, 0, 21, 364, 2730, 13020, 46655, 137256, 349524, 797160, 1666665, 3247860, 5971966, 10458084, 17568915, 28476560, 44739240, 68389776, 102036669, 148978620, 213333330, 300181420, 415726311, 567470904, 764411900, 1017252600
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Comments

Also integer sequences for (n^2-n)/1 (A002378 offset), (n^3-n)/2 (A027480 offset), (n^43-n)/42 (A108496) and (n^1807-n)/1806.

Examples

			a(2) = (2^7 - 2)/6 = 126/6 = 21.
		

Crossrefs

Programs

  • Magma
    [(n^7-n)/6: n in [0..40]]; // Vincenzo Librandi, May 02 2011
    
  • Mathematica
    Table[(n^7-n)/6,{n,0,30}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{0,0,21,364,2730,13020,46655,137256},30] (* Harvey P. Dale, Apr 16 2014 *)
  • Python
    [(n**7-n)//6 for n in range(41)] # David Radcliffe, Jun 06 2025

Formula

a(n) = (n-1)*A059721(n) = -A024004(n)*n/6.
G.f.: 7*x^2*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4)/(1-x)^8. [Colin Barker, May 08 2012]

A108496 a(n) = (n^43 - n)/42.

Original entry on oeis.org

0, 0, 209430786243, 7815642080822311372, 1842172677508006361457030, 27068294695622864223661876860, 68747114771196346634599779308105, 51995580380757061883555053636996008
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Comments

Also integer sequences for (n^2-n)/1 (A002378 offset), (n^3-n)/2 (A027480 offset), (n^7-n)/6 (A108495) and (n^1807-n)/1806.

Examples

			a(2) = (2^43 - 2)/42 = 8796093022206/42 = 209430786243.
		

Crossrefs

Programs

Formula

a(n) = (n-1)*A108048(n).

A174002 a(n) = n*binomial(n+4, 4).

Original entry on oeis.org

0, 5, 30, 105, 280, 630, 1260, 2310, 3960, 6435, 10010, 15015, 21840, 30940, 42840, 58140, 77520, 101745, 131670, 168245, 212520, 265650, 328900, 403650, 491400, 593775, 712530, 849555, 1006880, 1186680, 1391280, 1623160, 1884960, 2179485
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 05 2010, Mar 17 2010

Keywords

Comments

This sequence can be computed from Pascal's triangle. Find the fifth number in a row and multiply it by the second number of the next row. - Alonso del Arte, Jan 21 2018

Crossrefs

Programs

  • Magma
    [ (n^5+10*n^4+35*n^3+50*n^2+24*n)/24: n in [0..40] ]; // Vincenzo Librandi, Dec 28 2010
  • Mathematica
    Table[n Binomial[n + 4, 4], {n, 0, 40}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 5, 30, 105, 280, 630}, 40] (* Harvey P. Dale, Dec 03 2011 *)

Formula

a(n) = (n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n) / 24.
For n > 0: a(n) = A003506(n+4, 5).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), with a(0)=0, a(1)=5, a(2)=30, a(3)=105, a(4)=280, a(5)=630. - Harvey P. Dale, Dec 03 2011
G.f.: 5*x/(1-x)^6. - Colin Barker, Mar 18 2012

Extensions

Title switched with first Formula section entry, at the suggestion of Alonso del Arte, by Jon E. Schoenfield, Jan 28 2018

A293617 Array of triangles read by ascending antidiagonals, T(m, n, k) = Pochhammer(m, k) * Stirling2(n + m, k + m) with m >= 0, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 2, 1, 0, 1, 10, 3, 7, 3, 0, 1, 15, 4, 25, 12, 2, 0, 1, 21, 5, 65, 30, 6, 1, 0, 1, 28, 6, 140, 60, 12, 15, 7, 0, 1, 36, 7, 266, 105, 20, 90, 50, 12, 0, 1, 45, 8, 462, 168, 30, 350, 195, 60, 6, 0, 1, 55, 9, 750, 252, 42, 1050, 560, 180, 24, 1, 0
Offset: 0

Views

Author

Peter Luschny, Oct 20 2017

Keywords

Examples

			Array starts:
m\j| 0   1  2     3       4       5       6       7       8       9      10
---|-----------------------------------------------------------------------
m=0| 1,  0, 0,    0,      0,      0,      0,      0,      0,      0,      0
m=1| 1,  1, 1,    1,      3,      2,      1,      7,     12,      6,      1
m=2| 1,  3, 2,    7,     12,      6,     15,     50,     60,     24,     31
m=3| 1,  6, 3,   25,     30,     12,     90,    195,    180,     60,    301
m=4| 1, 10, 4,   65,     60,     20,    350,    560,    420,    120,   1701
m=5| 1, 15, 5,  140,    105,     30,   1050,   1330,    840,    210,   6951
m=6| 1, 21, 6,  266,    168,     42,   2646,   2772,   1512,    336,  22827
m=7| 1, 28, 7,  462,    252,     56,   5880,   5250,   2520,    504,  63987
m=8| 1, 36, 8,  750,    360,     72,  11880,   9240,   3960,    720, 159027
m=9| 1, 45, 9, 1155,    495,     90,  22275,  15345,   5940,    990, 359502
   A000217, A001296,A027480,A002378,A001297,A293475,A033486,A007531,A001298
.
m\j| ...      11      12      13      14
---|-----------------------------------------
m=0| ...,      0,      0,      0,      0, ... [A000007]
m=1| ...,     15,     50,     60,     24, ... [A028246]
m=2| ...,    180,    390,    360,    120, ... [A053440]
m=3| ...,   1050,   1680,   1260,    360, ... [A294032]
m=4| ...,   4200,   5320,   3360,    840, ...
m=5| ...,  13230,  13860,   7560,   1680, ...
m=6| ...,  35280,  31500,  15120,   3024, ...
m=7| ...,  83160,  64680,  27720,   5040, ...
m=8| ..., 178200, 122760,  47520,   7920, ...
m=9| ..., 353925, 218790,  77220,  11880, ...
         A293476,A293608,A293615,A052762, ...
.
The parameter m runs over the triangles and j indexes the triangles by reading them by rows. Let T(m, n) denote the row [T(m, n, k) for 0 <= k <= n] and T(m) denote the triangle [T(m, n) for n >= 0]. Then for instance T(2) is the triangle A053440, T(3, 2) is row 2 of A294032 (which is [25, 30, 12]) and T(3, 2, 1) = 30.
.
Remark: To adapt the sequences A028246 and A053440 to our enumeration use the exponential generating functions exp(x)/(1 - y*(exp(x) - 1)) and exp(x)*(2*exp(x) - y*exp(2*x) + 2*y*exp(x) - 1 - y)/(1 - y*(exp(x) - 1))^2 instead of those indicated in their respective entries.
		

Crossrefs

A000217(n) = T(n, 1, 0), A001296(n) = T(n, 2, 0), A027480(n) = T(n, 2, 1),
A002378(n) = T(n, 2, 2), A001297(n) = T(n, 3, 0), A293475(n) = T(n, 3, 1),
A033486(n) = T(n, 3, 2), A007531(n) = T(n, 3, 3), A001298(n) = T(n, 4, 0),
A293476(n) = T(n, 4, 1), A293608(n) = T(n, 4, 2), A293615(n) = T(n, 4, 3),
A052762(n) = T(n, 4, 4), A052787(n) = T(n, 5, 5), A000225(n) = T(1, n, 1),
A028243(n) = T(1, n, 2), A028244(n) = T(1, n, 3), A028245(n) = T(1, n, 4),
A032180(n) = T(1, n, 5), A228909(n) = T(1, n, 6), A228910(n) = T(1, n, 7),
A000225(n) = T(2, n, 0), A007820(n) = T(n, n, 0).
A028246(n,k) = T(1, n, k), A053440(n,k) = T(2, n, k), A294032(n,k) = T(3, n, k),
A293926(n,k) = T(n, n, k), A124320(n,k) = T(n, k, k), A156991(n,k) = T(k, n, n).
Cf. A293616.

Programs

  • Maple
    A293617 := proc(m, n, k) option remember:
    if m = 0 then 0^n elif k < 0 or k > n then 0 elif n = 0 then 1 else
    (k+m)*A293617(m,n-1,k) + k*A293617(m,n-1,k-1) + A293617(m-1,n,k) fi end:
    for m in [$0..4] do for n in [$0..6] do print(seq(A293617(m, n, k), k=0..n)) od od;
    # Sample uses:
    A027480 := n -> A293617(n, 2, 1): A293608 := n -> A293617(n, 4, 2):
    # Flatten:
    a := proc(n) local w; w := proc(k) local t, s; t := 1; s := 1;
    while t <= k do s := s + 1; t := t + s od; [s - 1, s - t + k] end:
    seq(A293617(n - k, w(k)[1], w(k)[2]), k=0..n) end: seq(a(n), n = 0..11);
  • Mathematica
    T[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m];
    For[m = 0, m < 7, m++, Print[Table[T[m, n, k], {n,0,6}, {k,0,n}]]]
    A293617Row[m_, n_] := Table[T[m, n, k], {k,0,n}];
    (* Sample use: *)
    A293926Row[n_] := A293617Row[n, n];

Formula

T(m,n,k) = (k + m)*T(m, n-1, k) + k*T(m, n-1, k-1) + T(m-1, n, k) with boundary conditions T(0, n, k) = 0^n; T(m, n, k) = 0 if k<0 or k>n; and T(m, 0, k) = 0^k.
T(m,n,k) = Pochhammer(m, k)*binomial(n + m, k + m)*NorlundPolynomial(n - k, -k - m).

A316224 a(n) = n*(2*n + 1)*(4*n + 1).

Original entry on oeis.org

0, 15, 90, 273, 612, 1155, 1950, 3045, 4488, 6327, 8610, 11385, 14700, 18603, 23142, 28365, 34320, 41055, 48618, 57057, 66420, 76755, 88110, 100533, 114072, 128775, 144690, 161865, 180348, 200187, 221430, 244125, 268320, 294063, 321402, 350385, 381060, 413475, 447678, 483717
Offset: 0

Views

Author

Bruno Berselli, Jun 27 2018

Keywords

Comments

Sums of the consecutive integers from A000384(n) to A000384(n+1)-1. This is the case s=6 of the formula n*(n*(s-2) + 1)*(n*(s-2) + 2)/2 related to s-gonal numbers.
The inverse binomial transform is 0, 15, 60, 48, 0, ... (0 continued).

Examples

			Row sums of the triangle:
|  0 |  ................................................................. 0
|  1 |  2  3  4  5  .................................................... 15
|  6 |  7  8  9 10 11 12 13 14  ........................................ 90
| 15 | 16 17 18 19 20 21 22 23 24 25 26 27  ........................... 273
| 28 | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44  ............... 612
| 45 | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65  .. 1155
...
where:
. first column is A000384,
. second column is A130883 (without 1),
. third column is A033816,
. diagonal is A014106,
. 0, 2, 8, 18, 32, 50, ... are in A001105.
		

Crossrefs

First bisection of A059270 and subsequence of A034828, A047866, A109900, A290168.
Sums of the consecutive integers from P(s,n) to P(s,n+1)-1, where P(s,k) is the k-th s-gonal number: A027480 (s=3), A055112 (s=4), A228888 (s=5).

Programs

  • GAP
    List([0..40], n -> n*(2*n+1)*(4*n+1));
    
  • Julia
    [n*(2*n+1)*(4*n+1) for n in 0:40] |> println
  • Magma
    [n*(2*n+1)*(4*n+1): n in [0..40]];
    
  • Maple
    seq(n*(2*n+1)*(4*n+1),n=0..40); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Table[n (2 n + 1) (4 n + 1), {n, 0, 40}]
  • Maxima
    makelist(n*(2*n+1)*(4*n+1), n, 0, 40);
    
  • PARI
    vector(40, n, n--; n*(2*n+1)*(4*n+1))
    
  • Python
    [n*(2*n+1)*(4*n+1) for n in range(40)]
    
  • Sage
    [n*(2*n+1)*(4*n+1) for n in (0..40)]
    

Formula

O.g.f.: 3*x*(5 + 10*x + x^2)/(1 - x)^4.
E.g.f.: x*(15 + 30*x + 8*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*A258582(n).
a(n) = -3*A100157(-n).
Sum_{n>0} 1/a(n) = 2*(3 - log(4)) - Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 2*sqrt(2)*log(1+sqrt(2)) + (sqrt(2)-1/2)*Pi - 6. - Amiram Eldar, Sep 17 2022

A008670 Molien series for Weyl group F_4.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 6, 7, 9, 11, 12, 16, 18, 20, 24, 28, 30, 36, 40, 44, 50, 56, 60, 69, 75, 81, 90, 99, 105, 117, 126, 135, 147, 159, 168, 184, 196, 208, 224, 240, 252, 272, 288, 304, 324, 344, 360, 385, 405, 425, 450, 475, 495, 525, 550, 575, 605, 635, 660, 696, 726, 756
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 3, 4 and 6. - Ilya Gutkovskiy, May 24 2017

References

  • Coxeter and Moser, Generators and Relations for Discrete Groups, Table 10.
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 28).

Crossrefs

Programs

  • Magma
    MolienSeries(CoxeterGroup("F4")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 08 2019
    
  • Maple
    a:= proc(n) local m, r; m := iquo (n, 12, 'r'); r:= r+1; ([4, 5, 6, 8, 10, 11, 14, 16, 18, 21, 24, 26][r]+ (6+r+4*m)*m)*m+ [1$3, 2, 3$2, 5, 6, 7, 9, 11, 12][r] end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 06 2008
  • Mathematica
    Take[CoefficientList[Series[1/((1-x^2)(1-x^6)(1-x^8)(1-x^12)),{x,0,130}], x], {1,-1,2}] (* or *) LinearRecurrence[ {1,0,1,0,-1,1,-2,1,-1,0,1,0,1,-1},{1,1,1,2,3,3,5,6,7,9,11,12,16,18},70] (* Harvey P. Dale, Feb 07 2012 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))) \\ G. C. Greubel, Sep 08 2019
    
  • Sage
    def A008670_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))).list()
    A008670_list(70) # G. C. Greubel, Sep 08 2019

Formula

G.f.: 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)). [Corrected by Ralf Stephan, Apr 29 2014]
a(n) = a(n-1) + a(n-3) - a(n-5) + a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) + a(n-11) + a(n-13) - a(n-14), with a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=3, a(6)=5, a(7)=6, a(8)=7, a(9)=9, a(10)=11, a(11)=12, a(12)=16, a(13)=18. - Harvey P. Dale, Feb 07 2012
a(n) ~ (1/432)*n^3. - Ralf Stephan, Apr 29 2014
a(n) = (120*floor(n/6)^3 + 60*(m+7)*floor(n/6)^2 + 2*(m^5-15*m^4+75*m^3-135*m^2+134*m+240)*floor(n/6) + 3*(m^5-15*m^4+75*m^3-135*m^2+84*m+70) + (m^5-15*m^4+75*m^3-135*m^2+44*m+30)*(-1)^floor(n/6))/240 where m = (n mod 6). - Luce ETIENNE, Aug 14 2018
a(n) = 1 + floor((2*n^3 + 42*n^2 + n*(279 + 9*(-1)^n - 48*[(n mod 3)=2]))/864) where [] is the Iverson bracket. - Hoang Xuan Thanh, Jun 22 2025

A056923 Write the integers in groups: 0; 1,2; 3,4,5; 6,7,8,9; ... and form the product of the members of each group.

Original entry on oeis.org

0, 2, 60, 3024, 240240, 27907200, 4475671200, 948964262400, 257256702743040, 86839771951296000, 35728290125079552000, 17602963463032472448000, 10233395250958706770944000, 6932022668773077815267328000
Offset: 0

Views

Author

Robert G. Wilson v, Sep 09 2000

Keywords

Comments

Each group begins with a triangular number and proceeds until one short of the next triangular number.
Also, the number under the radical using Brahmagupta's formula for an n-sided cyclic quadrilateral with sides 1..n. - Ben Paul Thurston, Dec 05 2006

Crossrefs

Programs

  • Maple
    a:= n-> mul(n*(n+1)/2+j, j=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Feb 02 2019
  • Mathematica
    Table[(n (n + 3)/2)!/((n - 1)(n + 2)/2)!, {n, 0, 15}]
    Times@@Range[First[#],Last[#]-1]&/@Partition[Accumulate[Range[0,15]],2,1] (* Harvey P. Dale, Apr 25 2014 *)

Formula

a(n) = (n (n + 3)/2)!/((n - 1)(n + 2)/2)!.
a(n) = Product_{j=1..n+1} ((n+2)*(n+1)/2-j). - Ben Paul Thurston, Dec 05 2006

A074246 Triangle of coefficients, read by rows, where the n-th row forms the polynomial P(n,x) = {Sum_{k=1..n} 1/(k+x)}*{Product_{k=1..n} (k+x)}.

Original entry on oeis.org

1, 3, 2, 11, 12, 3, 50, 70, 30, 4, 274, 450, 255, 60, 5, 1764, 3248, 2205, 700, 105, 6, 13068, 26264, 20307, 7840, 1610, 168, 7, 109584, 236248, 201852, 89796, 22680, 3276, 252, 8, 1026576, 2345400, 2171040, 1077300, 316365, 56700, 6090, 360, 9
Offset: 1

Views

Author

Paul D. Hanna, Sep 19 2002

Keywords

Comments

The n-th row polynomial, P(n,x), has ordered zeros {z_k < z_(k+1), 0
The higher-order exponential integrals E(x,m,n) are defined in A163931 and the asymptotic expansion of E(x,m=2,n) can be found in A028421. We determined with the latter that E(x,m=2,n+1) = (exp(-x)/x^2)*(1 - (3+2*n)/x + (11+12*n+3*n^2)/x^2 - (50+70*n+30*n^2+ 4*n^3)/x^3 + .... ). The polynomial coefficients in the numerators lead to the coefficients of the triangle given above. The numerators of the o.g.f.s of the right hand columns of this triangle lead for z = 1 to A001147. - Johannes W. Meijer, Oct 16 2009

Examples

			Polynomials begin:
P(1,x) = 1,
P(2,x) = 3 + 2x,
P(3,x) = 11 + 12x + 3x^2,
P(4,x) = 50 + 70x + 30x^2 + 4x^3,
P(5,x) = 274 + 450x + 255x^2 + 60x^3 + 5x^4,
P(6,x) = 1764 + 3248x + 2205x^2 + 700x^3 + 105x^4 + 6x^5,
P(7,x) = 13068 + 26264x + 20307x^2 + 7840x^3 + 1610x^4 + 168x^5 + 7x^6,
P(8,x) = 109584 + 236248x + 201852x^2 + 89796x^3 + 22680x^4 + 3276x^5 + 252x^6 + 8x^7,
P(9,x) = 1026576 + 2345400x + 2171040x^2 + 1077300x^3 + 316365x^4 + 56700x^5 + 6090x^6 + 360x^7 + 9x^8,
P(10,x) = 10628640 + 25507152x + 25228500x^2 + 13667720x^3 + 4510275x^4 + 946638x^5 + 127050x^6 + 10560x^7 + 495x^8 + 10x^9, ...
		

Crossrefs

See references and formulas at A000254, A001705. Cf. A028421.
A027480 is the second right hand column. - Johannes W. Meijer, Oct 16 2009

Programs

  • Maple
    with(combinat): A074246 := proc(n,m): (-1)^(n+m)*binomial(m,1)*stirling1(n+1,m+1) end: seq(seq(A074246(n,m),m=1..n),n=1..9); # Johannes W. Meijer, Oct 16 2009, Revised Sep 09 2012
  • Mathematica
    p[n_, x_] := Sum[1/(k+x), {k, 1, n}] Product[k+x, {k, 1, n}] ; Flatten[Table[ CoefficientList[ p[n, x] // Simplify[#, ComplexityFunction -> Length] &, x], {n, 1, 9}]] (* Jean-François Alcover, May 04 2011 *)
  • PARI
    P(n) = Vecrev(sum(k=1, n, prod(k=1, n, (k+x))/(k+x)));
    for (n=1, 10, print(P(n))) \\ Michel Marcus, Jan 22 2017

Formula

First column is A000254 (Stirling numbers of first kind s(n, 2): a(n+1)=(n+1)*a(n)+n!), while sum of rows is A001705 (generalized Stirling numbers). Also related to Harmonic numbers: P(n, 0)=n!*H(n), H(n)=harmonic number.
T(n,k) = (-1)^(n+k)*k*Stirling1(n+1,k+1). - Johannes W. Meijer, Oct 16 2009
E.g.f.: 1/(1 - z)^(x+1)*log(1/(1 - z)). Cf. A028421. - Peter Bala, Jan 06 2015

A225413 Triangle read by rows: T(n,k) = (A101164(n,k) - A014473(n,k))/2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 6, 12, 6, 0, 0, 0, 0, 10, 30, 30, 10, 0, 0, 0, 0, 15, 60, 91, 60, 15, 0, 0, 0, 0, 21, 105, 215, 215, 105, 21, 0, 0, 0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0, 0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0
Offset: 0

Author

Jeremy Gardiner, Jul 28 2013

Keywords

Comments

Has opposite parity to A140356, A155454.

Examples

			Triangle begins as:
  0;
  0,  0;
  0,  0,  0;
  0,  0,  0,   0;
  0,  0,  1,   0,    0;
  0,  0,  3,   3,    0,    0;
  0,  0,  6,  12,    6,    0,    0;
  0,  0, 10,  30,   30,   10,    0,    0;
  0,  0, 15,  60,   91,   60,   15,    0,    0;
  0,  0, 21, 105,  215,  215,  105,   21,    0,    0;
  0,  0, 28, 168,  435,  590,  435,  168,   28,    0,   0;
  0,  0, 36, 252,  791, 1365, 1365,  791,  252,   36,   0,  0;
  0,  0, 45, 360, 1330, 2800, 3571, 2800, 1330,  360,  45,  0,  0;
  0,  0, 55, 495, 2106, 5250, 8197, 8197, 5250, 2106, 495, 55,  0,  0;
		

Crossrefs

3rd column = A000217 (triangular numbers).
4th column = A027480 (n(n+1)(n+2)/2).

Programs

  • Haskell
    a225413 n k = a225413_tabl !! n !! k
    a225413_row n = a225413_tabl !! n
    a225413_tabl = map (map (`div` 2)) $
                   zipWith (zipWith (-)) a101164_tabl a014473_tabl
    -- Reinhard Zumkeller, Jul 30 2013
    
  • Magma
    A008288:= func< n,k | (&+[Binomial(n-j, j)*Binomial(n-2*j, k-j): j in [0..k]]) >;
    A225413:= func< n,k | (A008288(n,k) - 2*Binomial(n,k) + 1)/2 >;
    [A225413(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
    
  • Mathematica
    T[n_, k_]:= ((-1)^(n-k)*Hypergeometric2F1[-n+k,k+1,1,2] - 2*Binomial[n, k] +1)/2;
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
  • SageMath
    def A008288(n,k): return sum(binomial(n-j,j)*binomial(n-2*j,k-j) for j in range(k+1))
    def A225413(n,k): return (A008288(n,k) -2*binomial(n,k) +1)//2
    flatten([[A225413(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024

Formula

T(n, k) = (A101164(n,k) - A014473(n,k))/2.
T(n, k) = (A008288(n,k) - 2*A007318(n,k) + 1)/2.
From G. C. Greubel, Apr 08 2024: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = (A000129(n+1) + n + 1 - 2^(n+1))/2.
Sum_{k=0..n} (-1)^k*T(n, k) = A121262(n) - [n=0]. (End)

A281258 Digital root of n*(n+1)*(n+2)/2.

Original entry on oeis.org

0, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9
Offset: 0

Author

Peter M. Chema, Jan 18 2017

Keywords

Comments

Also zero together with period 9: repeat [3, 3, 3, 6, 6, 6, 9, 9, 9].
Also the decimal expansion of 334001/1001001.

Crossrefs

Programs

  • Mathematica
    PadRight[{0},120,{9,3,3,3,6,6,6,9,9}] (* Harvey P. Dale, Mar 22 2018 *)

Formula

a(n) = A010888(A027480(n)).
From Stefano Spezia, Aug 30 2022: (Start)
G.f.: 3*x*(1 + 2*x^3 + 3*x^6)/((1 - x)*(1 + x^3 + x^6)).
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-6) + a(n-7) for n > 7. (End)
Previous Showing 31-40 of 59 results. Next