A096617
Numerator of n*HarmonicNumber(n).
Original entry on oeis.org
1, 3, 11, 25, 137, 147, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 275295799, 279175675, 56574159, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003
Offset: 1
1, 3, 11/2, 25/3, 137/12, 147/10, 363/20, 761/35, 7129/280, ...
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 2nd Ed. 1957, p. 211, formula (3.3)
-
[Numerator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014
-
ZL:=n->sum(sum(1/i, i=1..n), j=1..n): a:=n->floor(numer(ZL(n))): seq(a(n), n=1..27); # Zerinvary Lajos, Jun 14 2007
-
Numerator[Table[(Sum[(1/k), {k, 1, n}]/Sum[(1/k), {k, 1, n-1}]), {n, 1, 20}]] (* Alexander Adamchuk, Oct 29 2004 *)
Table[n*HarmonicNumber[n] // Numerator, {n, 1, 27}] (* Jean-François Alcover, Feb 17 2014 *)
-
{h(n) = sum(k=1,n,1/k)};
for(n=1,50, print1(numerator(n*h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
-
A=List(f=1); for(k=1,999, t=[A[k]*(k+1),f*=k]; t/=gcd(t); listput(A,t[1]+f=t[2])) \\ Illustrate conjectured equality. - M. F. Hasler, Jul 04 2019
A081528
a(n) = n*lcm{1,2,...,n}.
Original entry on oeis.org
1, 4, 18, 48, 300, 360, 2940, 6720, 22680, 25200, 304920, 332640, 4684680, 5045040, 5405400, 11531520, 208288080, 220540320, 4423058640, 4655851200, 4888643760, 5121436320, 123147264240, 128501493120, 669278610000, 696049754400
Offset: 1
a(2) = 4 because the least common multiple of 1 and 2 is 2, and 2 * 2 = 4.
a(3) = 18 because lcm(1,2,3) = 6, and 3 * 6 = 18.
a(4) = 48 because lcm(1, 2, 3, 4) = 12, and 4 * 12 = 48.
-
a(n) := (n + 1)*LCM(VECTOR(k + 1, k, 0, n)) " Paul Barry, Aug 06 2004 "
-
Table[n*LCM@@Range[n], {n, 30}] (* Harvey P. Dale, Oct 09 2012 *)
-
l=vector(35); l[1]=1; print1("1, "); for(n=2,35, l[n]=lcm(l[n-1],n); print1(n*l[n],", ")) \\ Rick L. Shepherd, Aug 21 2006
A124838
Denominators of third-order harmonic numbers (defined by Conway and Guy, 1996).
Original entry on oeis.org
1, 2, 6, 4, 20, 10, 70, 56, 504, 420, 4620, 3960, 3432, 6006, 90090, 80080, 1361360, 408408, 369512, 67184, 470288, 1293292, 29745716, 27457584, 228813200, 212469400, 5736673800, 5354228880, 155272637520, 291136195350, 273491577450
Offset: 1
a(1) = 1 = denominator of 1/1.
a(2) = 2 = denominator of 1/1 + 5/2 = 7/2.
a(3) = 6 = denominator of 7/2 + 13/3 = 47/6.
a(4) = 4 = denominator of 47/6 + 77/12 = 57/4.
a(5) = 20 = denominator of 57/4 + 87/10 = 549/20.
a(6) = 10 = denominator of 549/20 + 223/20 = 341/10
a(7) = 70 = denominator of 341/10 + 481/35 = 3349/70.
a(8) = 1260 = denominator of 3349/70 + 4609/280 = 88327/1260.
a(9) = 45 = denominator of 88327/1260 + 4861/252 = 3844/45.
a(10) = 504 = denominator of 3844/45 + 55991/2520 = 54251/504, or, untelescoping:
a(10) = 504 = denominator of 1/1 + 5/2 + 13/3 + 77/12 + 87/10 + 223/20 + 481/35 + 4609/252 + 4861/252 + 55991/2520 = 54251/504.
- J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.
A363000
a(n) = numerator(R(n, n, 1)), where R are the rational polynomials R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).
Original entry on oeis.org
1, 5, 19, 188, 1249, 125744, 283517, 303923456, 138604561, 599865008128, 118159023973, 7078040993755136, 155792758736921, 146303841678548271104, 294014633772018349, 64670474732430319157248, 752324747622089633569, 3224753626003393505960919040, 2507759850059601711479669
Offset: 0
a(n) are the numerators of the terms on the main diagonal of the triangle:
[0] 1;
[1] 1, 5/2;
[2] 1, 7/2, 19/2;
[3] 1, 11/2, 121/6, 188/3;
[4] 1, 19/2, 95/2, 369/2, 1249/2;
[5] 1, 35/2, 721/6, 1748/3, 35164/15, 125744/15;
[6] 1, 67/2, 639/2, 3877/2, 18533/2, 76317/2, 283517/2;
-
# For better context we put A362998, A362999, A363000, and A363001 together here.
R := (n, k, x) -> add(add(x^j*binomial(u, j)*(j+1)^n, j=0..u)/(u + 1), u=0..k):
### x = 1 -> this sequence
for n from 0 to 7 do [n], seq(R(n, k, 1), k = 0..n) od;
seq(R(n, n, 1), n = 0..9);
A363000 := n -> numer(R(n, n, 1)): seq(A363000(n), n = 0..10);
A363001 := n -> denom(R(n, n, 1)): seq(A363001(n), n = 0..20);
A362999 := n -> denom(R(2*n+1, 2*n+1, 1)): seq(A362999(n), n = 0..11);
A362998 := n -> add(R(2*n, k, 1), k = 0..2*n): seq(A362998(n), n = 0..9);
### x = -1 -> Bernoulli(n, 1)
# for n from 0 to 9 do [n], seq(R(n, k,-1), k = 0..n) od;
# seq(R(n, n, -1), n = 0..12); seq(bernoulli(n, 1), n = 0..12);
### x = 0 -> Harmonic numbers
# for n from 0 to 9 do [n], seq(R(n, k, 0), k = 0..n) od;
# seq(R(n, n, 0), n = 0..9); seq(harmonic(n+1), n = 0..9);
A128438
a(n) = floor((denominator of H(n))/n), where H(n) = Sum_{k=1..n} 1/k, the n-th harmonic number.
Original entry on oeis.org
1, 1, 2, 3, 12, 3, 20, 35, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 226893, 4084080, 775975, 246341, 235144, 5173168, 14872858, 356948592, 343219800, 2974571600, 2868336900, 80313433200, 77636318760, 2329089562800
Offset: 1
The sequence denominator(H(n))/n begins 1, 1, 2, 3, 12, 10/3, 20, 35, 280, 252, 2520, 2310, ..., so the present sequence begins 1, 1, 2, 3, 12, 3, 20, 35, 280, 252, 2520, 2310, ...
-
H:=n->sum(1/k,k=1..n): a:=n->floor(denom(H(n))/n): seq(a(n),n=1..34); # Emeric Deutsch, Mar 25 2007
-
seq = {}; s = 0; Do[s += 1/n; AppendTo[seq, Floor[Denominator[s]/n]], {n, 1, 30}]; seq (* Amiram Eldar, Sep 18 2021 *)
Table[Floor[Denominator[HarmonicNumber[n]]/n],{n,40}] (* Harvey P. Dale, Nov 24 2023 *)
-
from sympy import harmonic
def A128438(n): return harmonic(n).q//n # Chai Wah Wu, Sep 27 2021
A354860
a(n) is the denominator of 1/prime(n) + 2/prime(n-1) + 3/prime(n-2) + ... + (n-1)/3 + n/2.
Original entry on oeis.org
2, 3, 30, 35, 2310, 15015, 34034, 4849845, 223092870, 154040315, 200560490130, 742073813481, 101416754509070, 6541380665835015, 55899071144408310, 5431526412865007455, 54936010004406075402, 4511091590746421960895, 2619440517026755685293030, 278970415063349480483707695
Offset: 1
1/2, 4/3, 71/30, 124/35, 11111/2310, 92402/15015, 257189/34034, ...
-
Table[Sum[(n - k + 1)/Prime[k], {k, 1, n}], {n, 1, 20}] // Denominator
-
from fractions import Fraction
from sympy import prime, primerange
def a(n): return sum(Fraction(n-i, p) for i, p in enumerate(primerange(1, prime(n)+1))).denominator
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Jun 09 2022
A354895
a(n) is the denominator of the n-th hyperharmonic number of order n.
Original entry on oeis.org
1, 2, 6, 12, 20, 60, 210, 56, 504, 504, 660, 3960, 5148, 4004, 4290, 34320, 17680, 31824, 302328, 77520, 813960, 8953560, 2288132, 27457584, 49031400, 12498200, 168725700, 42948360, 10925460, 163881900, 2540169450, 645122400, 327523680, 5567902560, 1412149200
Offset: 1
1, 5/2, 47/6, 319/12, 1879/20, 20417/60, 263111/210, 261395/56, 8842385/504, ...
- J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, p. 258.
-
N:= 100: # for a(1)..a(N)
H:= ListTools:-PartialSums([seq(1/i,i=1..2*N-1)]):
f:= n -> denom(binomial(2*n-1,n-1)*(H[2*n-1]-H[n-1])):
f(1):= 1:
map(f, [$1..N]); # Robert Israel, Jul 10 2023
-
Table[SeriesCoefficient[-Log[1 - x]/(1 - x)^n, {x, 0, n}], {n, 1, 35}] // Denominator
Table[Binomial[2 n - 1, n - 1] (HarmonicNumber[2 n - 1] - HarmonicNumber[n - 1]), {n, 1, 35}] // Denominator
-
H(n) = sum(i=1, n, 1/i);
a(n) = denominator(binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1))); \\ Michel Marcus, Jun 10 2022
-
from math import comb
from sympy import harmonic
def A354895(n): return (comb(2*n-1,n-1)*(harmonic(2*n-1)-harmonic(n-1))).q # Chai Wah Wu, Jun 18 2022
A382812
Numerator of the n-th partial sum of the squares of the harmonic numbers.
Original entry on oeis.org
1, 13, 119, 1577, 3233, 8867, 141563, 2844129, 28119709, 335676251, 3968696491, 55023970333, 758025067309, 799020611041, 1676892996083, 59597395635137, 351844709221043, 2314823924364859, 9114392136427625, 628176680098075, 216039223801697, 5117413095318143, 363066107054194281, 27957386425926920257
Offset: 1
The squares of the first three harmonic numbers are 1, 9/4, 121/36 which sum to 119/18 so a(3)=119.
-
H2:= n-> add(harmonic(k)^2, k = 1..n): seq(numer(H2(n)), n=1..25);
-
Accumulate[HarmonicNumber[Range[30]]^2]//Numerator (* Harvey P. Dale, Aug 10 2025 *)
-
a(n) = numerator(sum(k=1, n, sum(i=1, k, 1/i)^2)); \\ Michel Marcus, Apr 07 2025
A382813
Denominator of the n-th partial sum of the squares of the harmonic numbers.
Original entry on oeis.org
1, 4, 18, 144, 200, 400, 4900, 78400, 635040, 6350400, 64033200, 768398400, 9275666400, 8657288640, 16232416200, 519437318400, 2779951574400, 16679709446400, 60213751101504, 3823095308032, 1216439416192, 26761667156224, 1769615240705312, 127412297330782464, 3062795608913040000
Offset: 1
The squares of the first three harmonic numbers are 1, 9/4, 121/36 which sum to 119/18 so a(3) = 18.
-
H2:= n-> add(harmonic(k)^2, k = 1..n): seq(denom(H2(n)), n=1..25);
-
a(n) = denominator(sum(k=1, n, sum(i=1, k, 1/i)^2)); \\ Michel Marcus, Apr 07 2025
A079076
Numerator of Sum_{1 0} n/k.
Original entry on oeis.org
0, 0, 3, 4, 65, 27, 203, 236, 3489, 2845, 53471, 21341, 757913, 553973, 619181, 1040164, 29169263, 16276383, 193614199, 116220883, 32925391, 10628013, 320160667, 455451475, 22987116115, 19980510667, 193553388003, 154777722503
Offset: 1
-
f[n_] := Block[{s = 0, d = 1}, While[d < n, If[ Mod[n, d] != 0, s = s + n/d]; d++ ]; s]; Numerator[ Table[ f[n], {n, 1, 28}]]
Comments