cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A096617 Numerator of n*HarmonicNumber(n).

Original entry on oeis.org

1, 3, 11, 25, 137, 147, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 275295799, 279175675, 56574159, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Comments

a(1) = 1, a(n) = Numerator( H(n) / H(n-1) ), where H(n) = HarmonicNumber(n) = A001008(n)/A002805(n). - Alexander Adamchuk, Oct 29 2004
Sampling a population of n distinct elements with replacement, n HarmonicNumber(n) is the expectation of the sample size for the acquisition of all n distinct elements. - Franz Vrabec, Oct 30 2004
p^2 divides a(p-1) for prime p>3. - Alexander Adamchuk, Jul 16 2006
It appears that a(n) = b(n) defined by b(n+1) = b(n)*(n+1)/g(n) + f(n), f(n) = n*f(n-1)/g(n) and g(n) = gcd(b(n)*(n+1), n*f(n-1)), b(1) = f(1) = g(1) = 1, i.e., the recurrent formula of A000254(n) where both terms are divided by their GCD at each step (and remain divided by this factor in the sequel). Is this easy to prove? - M. F. Hasler, Jul 04 2019

Examples

			1, 3, 11/2, 25/3, 137/12, 147/10, 363/20, 761/35, 7129/280, ...
		

References

  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 2nd Ed. 1957, p. 211, formula (3.3)

Crossrefs

Differs from A025529 at 7th term.
Cf. A193758.

Programs

  • Magma
    [Numerator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014
    
  • Maple
    ZL:=n->sum(sum(1/i, i=1..n), j=1..n): a:=n->floor(numer(ZL(n))): seq(a(n), n=1..27); # Zerinvary Lajos, Jun 14 2007
  • Mathematica
    Numerator[Table[(Sum[(1/k), {k, 1, n}]/Sum[(1/k), {k, 1, n-1}]), {n, 1, 20}]] (* Alexander Adamchuk, Oct 29 2004 *)
    Table[n*HarmonicNumber[n] // Numerator, {n, 1, 27}]  (* Jean-François Alcover, Feb 17 2014 *)
  • PARI
    {h(n) = sum(k=1,n,1/k)};
    for(n=1,50, print1(numerator(n*h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
    
  • PARI
    A=List(f=1); for(k=1,999, t=[A[k]*(k+1),f*=k]; t/=gcd(t); listput(A,t[1]+f=t[2])) \\ Illustrate conjectured equality. - M. F. Hasler, Jul 04 2019

Formula

a(n) = abs(Stirling1(n+1, 2))/(n-1)!. - Vladeta Jovovic, Jul 06 2004
a(n) = numerator of Integral_{t=0..oo} 1-(1-exp(-t/n))^n dt. - Jean-François Alcover, Feb 17 2014

A081528 a(n) = n*lcm{1,2,...,n}.

Original entry on oeis.org

1, 4, 18, 48, 300, 360, 2940, 6720, 22680, 25200, 304920, 332640, 4684680, 5045040, 5405400, 11531520, 208288080, 220540320, 4423058640, 4655851200, 4888643760, 5121436320, 123147264240, 128501493120, 669278610000, 696049754400
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2003

Keywords

Comments

Denominators in binomial transform of 1/(n + 1)^2. - Paul Barry, Aug 06 2004
Construct a sequence S_n from n sequences b_1, b_2, ..., b_n of periods 1, 2, ..., n, respectively, say, b_1 = [1, 1, ...], b_2 = [1, 2, 1, 2, ...], ..., b_n = [1, 2, 3, ..., n, 1, 2, 3, ..., n, ...], by taking S_n = [b_1(1), b_2(1), ..., b_n(1), b_1(2), b_2(2), ..., b_n(2), ..., b_1(n), b_2(n), ..., b_n(n), ...] (by listing the b_i sequences in rows and taking each column in turn as the next n terms of S_n). Then a(n) is the period of sequence S_n. - Rick L. Shepherd, Aug 21 2006
This is a sequence that goes in strictly ascending order. The related sequence A003418 also goes in ascending order but has consecutive repeated terms. Since n increases, then so too does a(n) even when A003418(n) doesn't. - Alonso del Arte, Nov 25 2012

Examples

			a(2) = 4 because the least common multiple of 1 and 2 is 2, and 2 * 2 = 4.
a(3) = 18 because lcm(1,2,3) = 6, and 3 * 6 = 18.
a(4) = 48 because lcm(1, 2, 3, 4) = 12, and 4 * 12 = 48.
		

Crossrefs

Programs

  • Derive
    a(n) := (n + 1)*LCM(VECTOR(k + 1, k, 0, n)) " Paul Barry, Aug 06 2004 "
    
  • Mathematica
    Table[n*LCM@@Range[n], {n, 30}] (* Harvey P. Dale, Oct 09 2012 *)
  • PARI
    l=vector(35); l[1]=1; print1("1, "); for(n=2,35, l[n]=lcm(l[n-1],n); print1(n*l[n],", ")) \\ Rick L. Shepherd, Aug 21 2006

Formula

a(n) = A003418(n) * n. - Martin Fuller, Jan 03 2006

Extensions

More terms from Paul Barry, Aug 06 2004
Entry revised by N. J. A. Sloane, Jan 15 2006

A124838 Denominators of third-order harmonic numbers (defined by Conway and Guy, 1996).

Original entry on oeis.org

1, 2, 6, 4, 20, 10, 70, 56, 504, 420, 4620, 3960, 3432, 6006, 90090, 80080, 1361360, 408408, 369512, 67184, 470288, 1293292, 29745716, 27457584, 228813200, 212469400, 5736673800, 5354228880, 155272637520, 291136195350, 273491577450
Offset: 1

Views

Author

Jonathan Vos Post, Nov 10 2006

Keywords

Comments

Numerators are A124837. All fractions reduced. Thanks to Jonathan Sondow for verifying these calculations. He suggests that the equivalent definition in terms of first order harmonic numbers may be computationally simpler. We are happy with the description of A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) +...+ (n-1)/2 + n, but baffled by the description of A027611.

Examples

			a(1) = 1 = denominator of 1/1.
a(2) = 2 = denominator of 1/1 + 5/2 = 7/2.
a(3) = 6 = denominator of 7/2 + 13/3 = 47/6.
a(4) = 4 = denominator of 47/6 + 77/12 = 57/4.
a(5) = 20 = denominator of 57/4 + 87/10 = 549/20.
a(6) = 10 = denominator of 549/20 + 223/20 = 341/10
a(7) = 70 = denominator of 341/10 + 481/35 = 3349/70.
a(8) = 1260 = denominator of 3349/70 + 4609/280 = 88327/1260.
a(9) = 45 = denominator of 88327/1260 + 4861/252 = 3844/45.
a(10) = 504 = denominator of 3844/45 + 55991/2520 = 54251/504, or, untelescoping:
a(10) = 504 = denominator of 1/1 + 5/2 + 13/3 + 77/12 + 87/10 + 223/20 + 481/35 + 4609/252 + 4861/252 + 55991/2520 = 54251/504.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.

Crossrefs

Programs

  • Haskell
    a124838 n = a213999 (n + 2) (n - 1) -- Reinhard Zumkeller, Jul 03 2012
  • Mathematica
    Table[Denominator[(n+2)!/2!/n!*Sum[1/k,{k,3,n+2}]],{n,1,40}] (* Alexander Adamchuk, Nov 11 2006 *)

Formula

A124837(n)/A124838(n) = Sum_{i=1..n} A027612(n)/A027611(n+1).
a(n) = denominator(Sum_{m=1..n} Sum_{L=1..m} Sum_{k=1..L} 1/k).
a(n) = denominator(((n+2)!/(2!*n!)) * Sum_{k=3..n+2} 1/k). - Alexander Adamchuk, Nov 11 2006
a(n) = A213999(n+2,n-1). - Reinhard Zumkeller, Jul 03 2012

Extensions

Corrected and extended by Alexander Adamchuk, Nov 11 2006

A363000 a(n) = numerator(R(n, n, 1)), where R are the rational polynomials R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).

Original entry on oeis.org

1, 5, 19, 188, 1249, 125744, 283517, 303923456, 138604561, 599865008128, 118159023973, 7078040993755136, 155792758736921, 146303841678548271104, 294014633772018349, 64670474732430319157248, 752324747622089633569, 3224753626003393505960919040, 2507759850059601711479669
Offset: 0

Views

Author

Peter Luschny, May 12 2023

Keywords

Comments

R(n, n, 0) are the (0-based) harmonic numbers, R(n, n, -1) are the Bernoulli numbers, and R(n, n, 1) is this sequence in its rational form.

Examples

			a(n) are the numerators of the terms on the main diagonal of the triangle:
[0] 1;
[1] 1,  5/2;
[2] 1,  7/2,  19/2;
[3] 1, 11/2, 121/6,  188/3;
[4] 1, 19/2,  95/2,  369/2,   1249/2;
[5] 1, 35/2, 721/6, 1748/3, 35164/15, 125744/15;
[6] 1, 67/2, 639/2, 3877/2,  18533/2,   76317/2, 283517/2;
		

Crossrefs

Cf. A363001 (denominators), A362999 (odd-indexed denominators), A362998.

Programs

  • Maple
    # For better context we put A362998, A362999, A363000, and A363001 together here.
    R := (n, k, x) -> add(add(x^j*binomial(u, j)*(j+1)^n, j=0..u)/(u + 1), u=0..k):
    ### x = 1 -> this sequence
     for n from 0 to 7 do [n], seq(R(n, k, 1), k = 0..n) od;
     seq(R(n, n, 1), n = 0..9);
     A363000 := n -> numer(R(n, n, 1)): seq(A363000(n), n = 0..10);
     A363001 := n -> denom(R(n, n, 1)): seq(A363001(n), n = 0..20);
     A362999 := n -> denom(R(2*n+1, 2*n+1, 1)): seq(A362999(n), n = 0..11);
     A362998 := n -> add(R(2*n, k, 1), k = 0..2*n): seq(A362998(n), n = 0..9);
    ### x = -1 -> Bernoulli(n, 1)
    # for n from 0 to 9 do [n], seq(R(n, k,-1), k = 0..n) od;
    # seq(R(n, n, -1), n = 0..12); seq(bernoulli(n, 1), n = 0..12);
    ### x = 0 -> Harmonic numbers
    # for n from 0 to 9 do [n], seq(R(n, k, 0), k = 0..n) od;
    # seq(R(n, n, 0), n = 0..9); seq(harmonic(n+1), n = 0..9);

Formula

Sum_{k=0..n} R(n, k, 0) = Sum_{j=0..n} (n-j+1)/(j+1) = (n+2)*Harmonic(n+1)-n-1.
Sum_{k=0..n} R(n, k,-1) = (n + 2 - 0^n) * Bernoulli(n, 1).
Sum_{k=0..2*n} R(2*n, k, 1) = A362998(n).
2*R(n, 1, 1) = A062709(n).

A128438 a(n) = floor((denominator of H(n))/n), where H(n) = Sum_{k=1..n} 1/k, the n-th harmonic number.

Original entry on oeis.org

1, 1, 2, 3, 12, 3, 20, 35, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 226893, 4084080, 775975, 246341, 235144, 5173168, 14872858, 356948592, 343219800, 2974571600, 2868336900, 80313433200, 77636318760, 2329089562800
Offset: 1

Views

Author

Leroy Quet, Mar 03 2007

Keywords

Comments

This is very similar to A027611, which is a different sequence. - N. J. A. Sloane, Nov 21 2008
Indices where a(n) differs from A027611 are terms of A074791. - Gary Detlefs, Sep 03 2011

Examples

			The sequence denominator(H(n))/n begins 1, 1, 2, 3, 12, 10/3, 20, 35, 280, 252, 2520, 2310, ..., so the present sequence begins 1, 1, 2, 3, 12, 3, 20, 35, 280, 252, 2520, 2310, ...
		

Crossrefs

Programs

  • Maple
    H:=n->sum(1/k,k=1..n): a:=n->floor(denom(H(n))/n): seq(a(n),n=1..34); # Emeric Deutsch, Mar 25 2007
  • Mathematica
    seq = {}; s = 0; Do[s += 1/n; AppendTo[seq, Floor[Denominator[s]/n]], {n, 1, 30}]; seq (* Amiram Eldar, Sep 18 2021 *)
    Table[Floor[Denominator[HarmonicNumber[n]]/n],{n,40}] (* Harvey P. Dale, Nov 24 2023 *)
  • Python
    from sympy import harmonic
    def A128438(n): return harmonic(n).q//n # Chai Wah Wu, Sep 27 2021

Extensions

More terms from Emeric Deutsch, Mar 25 2007

A354860 a(n) is the denominator of 1/prime(n) + 2/prime(n-1) + 3/prime(n-2) + ... + (n-1)/3 + n/2.

Original entry on oeis.org

2, 3, 30, 35, 2310, 15015, 34034, 4849845, 223092870, 154040315, 200560490130, 742073813481, 101416754509070, 6541380665835015, 55899071144408310, 5431526412865007455, 54936010004406075402, 4511091590746421960895, 2619440517026755685293030, 278970415063349480483707695
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 09 2022

Keywords

Comments

Denominator of a second order prime harmonic number.

Examples

			1/2, 4/3, 71/30, 124/35, 11111/2310, 92402/15015, 257189/34034, ...
		

Crossrefs

Cf. A002110, A027611, A354859 (numerators).

Programs

  • Mathematica
    Table[Sum[(n - k + 1)/Prime[k], {k, 1, n}], {n, 1, 20}] // Denominator
  • Python
    from fractions import Fraction
    from sympy import prime, primerange
    def a(n): return sum(Fraction(n-i, p) for i, p in enumerate(primerange(1, prime(n)+1))).denominator
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Jun 09 2022

Formula

a(n) is the denominator of Sum_{j=1..n} Sum_{i=1..j} 1/prime(i).

A354895 a(n) is the denominator of the n-th hyperharmonic number of order n.

Original entry on oeis.org

1, 2, 6, 12, 20, 60, 210, 56, 504, 504, 660, 3960, 5148, 4004, 4290, 34320, 17680, 31824, 302328, 77520, 813960, 8953560, 2288132, 27457584, 49031400, 12498200, 168725700, 42948360, 10925460, 163881900, 2540169450, 645122400, 327523680, 5567902560, 1412149200
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2022

Keywords

Examples

			1, 5/2, 47/6, 319/12, 1879/20, 20417/60, 263111/210, 261395/56, 8842385/504, ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, p. 258.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    H:= ListTools:-PartialSums([seq(1/i,i=1..2*N-1)]):
    f:= n -> denom(binomial(2*n-1,n-1)*(H[2*n-1]-H[n-1])):
    f(1):= 1:
    map(f, [$1..N]); # Robert Israel, Jul 10 2023
  • Mathematica
    Table[SeriesCoefficient[-Log[1 - x]/(1 - x)^n, {x, 0, n}], {n, 1, 35}] // Denominator
    Table[Binomial[2 n - 1, n - 1] (HarmonicNumber[2 n - 1] - HarmonicNumber[n - 1]), {n, 1, 35}] // Denominator
  • PARI
    H(n) = sum(i=1, n, 1/i);
    a(n) = denominator(binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1))); \\ Michel Marcus, Jun 10 2022
    
  • Python
    from math import comb
    from sympy import harmonic
    def A354895(n): return (comb(2*n-1,n-1)*(harmonic(2*n-1)-harmonic(n-1))).q # Chai Wah Wu, Jun 18 2022

Formula

a(n) is the denominator of the coefficient of x^n in the expansion of -log(1 - x) / (1 - x)^n.
a(n) is the denominator of binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1)), where H(n) is the n-th harmonic number.
A354894(n) / a(n) ~ log(2) * 2^(2*n-1) / sqrt(Pi * n).

A382812 Numerator of the n-th partial sum of the squares of the harmonic numbers.

Original entry on oeis.org

1, 13, 119, 1577, 3233, 8867, 141563, 2844129, 28119709, 335676251, 3968696491, 55023970333, 758025067309, 799020611041, 1676892996083, 59597395635137, 351844709221043, 2314823924364859, 9114392136427625, 628176680098075, 216039223801697, 5117413095318143, 363066107054194281, 27957386425926920257
Offset: 1

Views

Author

Gary Detlefs, Apr 05 2025

Keywords

Examples

			The squares of the first three harmonic numbers are 1, 9/4, 121/36 which sum to 119/18 so a(3)=119.
		

Crossrefs

Cf. A001008, A002805, A382813 (denominators).

Programs

  • Maple
    H2:= n-> add(harmonic(k)^2, k = 1..n): seq(numer(H2(n)), n=1..25);
  • Mathematica
    Accumulate[HarmonicNumber[Range[30]]^2]//Numerator (* Harvey P. Dale, Aug 10 2025 *)
  • PARI
    a(n) = numerator(sum(k=1, n, sum(i=1, k, 1/i)^2)); \\ Michel Marcus, Apr 07 2025

Formula

a(n) = numerator((n+1)*H(n)^2-(2*n+1)*H(n) + 2*n), where H(n) is the n-th harmonic number.
a(n) = numerator((S(n)*H(n)^2 + (2*n - 2*S(n) + 1)*H(n)-2*n)/(H(n)-1)), where S(n) is the n-th partial sum of H(n).

A382813 Denominator of the n-th partial sum of the squares of the harmonic numbers.

Original entry on oeis.org

1, 4, 18, 144, 200, 400, 4900, 78400, 635040, 6350400, 64033200, 768398400, 9275666400, 8657288640, 16232416200, 519437318400, 2779951574400, 16679709446400, 60213751101504, 3823095308032, 1216439416192, 26761667156224, 1769615240705312, 127412297330782464, 3062795608913040000
Offset: 1

Views

Author

Gary Detlefs, Apr 05 2025

Keywords

Comments

All terms for n>1 are even.

Examples

			The squares of the first three harmonic numbers are 1, 9/4, 121/36 which sum to 119/18 so a(3) = 18.
		

Crossrefs

Cf. A001008, A002805, A382812 (numerators).

Programs

  • Maple
    H2:= n-> add(harmonic(k)^2, k = 1..n): seq(denom(H2(n)), n=1..25);
  • PARI
    a(n) = denominator(sum(k=1, n, sum(i=1, k, 1/i)^2)); \\ Michel Marcus, Apr 07 2025

Formula

a(n) = denominator((n+1)*H(n)^2-(2*n+1)*H(n)+2*n), where H(n) is the n-th harmonic number.
a(n) = denominator((S(n)*H(n)^2+(2*n-2*S(n)+1)*H(n) - 2*n)/(H(n) - 1)), where S(n) = the n-th partial sum of H(n).

A079076 Numerator of Sum_{1 0} n/k.

Original entry on oeis.org

0, 0, 3, 4, 65, 27, 203, 236, 3489, 2845, 53471, 21341, 757913, 553973, 619181, 1040164, 29169263, 16276383, 193614199, 116220883, 32925391, 10628013, 320160667, 455451475, 22987116115, 19980510667, 193553388003, 154777722503
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 21 2002

Keywords

Crossrefs

Cf. A027611 (denominator), A049820, A024816.

Programs

  • Mathematica
    f[n_] := Block[{s = 0, d = 1}, While[d < n, If[ Mod[n, d] != 0, s = s + n/d]; d++ ]; s]; Numerator[ Table[ f[n], {n, 1, 28}]]

Formula

p divides a(p^k) for prime p and integer k>1. p divides a(p), a(2p) and a(2p^2) for prime p>2. - Alexander Adamchuk, Jul 27 2006

Extensions

Edited and extended by Robert G. Wilson v, Dec 30 2002
Previous Showing 11-20 of 24 results. Next