cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A379200 G.f. A(x,y) satisfies 1/x = Sum_{n=-oo..+oo} A(x,y)^n * (A(x,y)^n + y)^(n+1), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 8, 13, 12, 5, 18, 40, 52, 40, 14, 52, 130, 204, 215, 140, 42, 184, 472, 813, 1004, 896, 504, 132, 688, 1863, 3430, 4588, 4816, 3738, 1848, 429, 2512, 7536, 15016, 21472, 24540, 22656, 15576, 6864, 1430, 8866, 30144, 65880, 102177, 124830, 126801, 104940, 64779, 25740, 4862, 30824, 118420, 284305, 483300, 636750, 693528, 638825, 479908, 268840, 97240, 16796
Offset: 1

Views

Author

Paul D. Hanna, Dec 20 2024

Keywords

Comments

Related identity: Sum_{n=-oo..+oo} x^n*(y - x^n)^n = 0, which holds formally for all y.

Examples

			G.f.: A(x,y) = x*(1) + x^2*(2 + y) + x^3*(4 + 4*y + 2*y^2) + x^4*(8 + 13*y + 12*y^2 + 5*y^3) + x^5*(18 + 40*y + 52*y^2 + 40*y^3 + 14*y^4) + x^6*(52 + 130*y + 204*y^2 + 215*y^3 + 140*y^4 + 42*y^5) + x^7*(184 + 472*y + 813*y^2 + 1004*y^3 + 896*y^4 + 504*y^5 + 132*y^6) + x^8*(688 + 1863*y + 3430*y^2 + 4588*y^3 + 4816*y^4 + 3738*y^5 + 1848*y^6 + 429*y^7) + x^9*(2512 + 7536*y + 15016*y^2 + 21472*y^3 + 24540*y^4 + 22656*y^5 + 15576*y^6 + 6864*y^7 + 1430*y^8) + x^10*(8866 + 30144*y + 65880*y^2 + 102177*y^3 + 124830*y^4 + 126801*y^5 + 104940*y^6 + 64779*y^7 + 25740*y^8 + 4862*y^9) + ...
where 1/x = Sum_{n=-oo..+oo} A(x,y)^n * (A(x,y)^n + y)^(n+1).
TRIANGLE.
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for n >= 1, k=0..n-1, begins
n = 1: [1];
n = 2: [2, 1];
n = 3: [4, 4, 2];
n = 4: [8, 13, 12, 5];
n = 5: [18, 40, 52, 40, 14];
n = 6: [52, 130, 204, 215, 140, 42];
n = 7: [184, 472, 813, 1004, 896, 504, 132];
n = 8: [688, 1863, 3430, 4588, 4816, 3738, 1848, 429];
n = 9: [2512, 7536, 15016, 21472, 24540, 22656, 15576, 6864, 1430];
n =10: [8866, 30144, 65880, 102177, 124830, 126801, 104940, 64779, 25740, 4862];
n =11: [30824, 118420, 284305, 483300, 636750, 693528, 638825, 479908, 268840, 97240, 16796];
n =12: [108088, 460746, 1205402, 2242581, 3213584, 3758727, 3731794, 3154866, 2171312, 1113398, 369512, 58786];
  ...
RELATED SEQUENCES.
A000108(n) = T(n+1,n) for n >= 0 (Catalan numbers).
A028329(n) = T(n+2,n) for n >= 0.
A166952(n) = T(n+1,0) for n >= 0 (g.f. F(x) = theta_3(x*F(x))).
A379201(n) = T(n,1) for n >= 2 (column 1).
A379206(n) = T(2*n-1,n-1) for n >= 1 (central terms).
A378264(n) = Sum_{k=0..n-1} T(n,k) for n >= 1.
A379199(n) = Sum_{k=0..n-1} T(n,k) * (-1)^k for n >= 1.
A379202(n) = Sum_{k=0..n-1} T(n,k) * 2^k for n >= 1.
A379203(n) = Sum_{k=0..n-1} T(n,k) * 3^k for n >= 1.
A379204(n) = Sum_{k=0..n-1} T(n,k) * 4^k for n >= 1.
A379205(n) = Sum_{k=0..n-1} T(n,k) * 5^k for n >= 1.
ALTERNATIVE FORMAT.
This triangle may also be presented as a rectangular table like so:
[  1,    1,     2,      5,     14,      42,      132, ...];
[  2,    4,    12,     40,    140,     504,     1848, ...];
[  4,   13,    52,    215,    896,    3738,    15576, ...];
[  8,   40,   204,   1004,   4816,   22656,   104940, ...];
[ 18,  130,   813,   4588,  24540,  126801,   638825, ...];
[ 52,  472,  3430,  21472, 124830,  693528,  3731794, ...];
[184, 1863, 15016, 102177, 636750, 3758727, 21365548, ...];
...
		

Crossrefs

Cf. A166952 (column 0, y=0), A378264 (row sums), A379201 (column 1), A379206 (central terms).
Cf. A379199 (y=-1), A379202 (y=2), A379203 (y=3), A379204 (y=4), A379205 (y=5).
Cf. A000108 (main diagonal), A028329 (diagonal).

Programs

  • PARI
    {T(n,k) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
    V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + y)^(m+1) ), #V-3); ); polcoef(polcoef(A, n, x), k, y)}
    for(n=1,12, for(k=0,n-1, print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=1} Sum_{k=0..n-1} T(n,k)*x^n*y^k satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x,y)^n * (A(x,y)^n + y)^(n+1).
(2) 1/x = Sum_{n=-oo..+oo} A(x,y)^(2*n) * (A(x,y)^n - y)^n.
(3) A(x,y) = x * Sum_{n=-oo..+oo} A(x,y)^(n^2) / (1 + y*A(x,y)^(n+1))^n.
(4) A(x,y) = x * Sum_{n=-oo..+oo} A(x,y)^(n^2) / (1 - y*A(x,y)^(n+1))^(n+1).
(5) A(B(x,y), y) = x where B(x,y) = 1/( Sum_{n=-oo..+oo} x^n * (x^n + y)^(n+1) ).

A028327 Elements in the even-Pascal triangle A028326 that are not 2.

Original entry on oeis.org

4, 6, 6, 8, 12, 8, 10, 20, 20, 10, 12, 30, 40, 30, 12, 14, 42, 70, 70, 42, 14, 16, 56, 112, 140, 112, 56, 16, 18, 72, 168, 252, 252, 168, 72, 18, 20, 90, 240, 420, 504, 420, 240, 90, 20, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 24, 132, 440, 990, 1584, 1848
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [2*Binomial(n, k): k in [1..n-1], n in [1..12]]; // G. C. Greubel, Jul 13 2024
    
  • Mathematica
    Table[2*Binomial[n,k], {n,13}, {k,n-1}]//Flatten (* G. C. Greubel, Jul 13 2024 *)
  • SageMath
    flatten([[2*binomial(n,k) for k in range(1,n)] for n in range(2,14)]) # G. C. Greubel, Jul 13 2024

Extensions

More terms from Donald Manchester, Jr. (s1199170(AT)cedarnet.cedarville.edu)

A028328 Distinct elements in the even-Pascal triangle A028326.

Original entry on oeis.org

2, 4, 6, 8, 12, 10, 20, 30, 40, 14, 42, 70, 16, 56, 112, 140, 18, 72, 168, 252, 90, 240, 420, 504, 22, 110, 330, 660, 924, 24, 132, 440, 990, 1584, 1848, 26, 156, 572, 1430, 2574, 3432, 28, 182, 728, 2002, 4004, 6006, 6864, 210, 910, 2730, 10010, 12870, 32
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Table[2*Binomial[n,k], {n,0,30}, {k,0,n}]//Flatten] (* G. C. Greubel, Jul 13 2024 *)
  • SageMath
    A028326=flatten([[2*binomial(n,k) for k in range(n+1)] for n in range(31)])
    def a(seq): # order preserving
        nd = [] # no duplicates
        [nd.append(i) for i in seq if not nd.count(i) and i%2==0]
        return nd
    a(A028326) # A028328 # G. C. Greubel, Jul 13 2024

Extensions

More terms from James Sellers, Dec 08 1999

A028330 Elements to the right of the central elements of the even-Pascal triangle A028326.

Original entry on oeis.org

2, 2, 6, 2, 8, 2, 20, 10, 2, 30, 12, 2, 70, 42, 14, 2, 112, 56, 16, 2, 252, 168, 72, 18, 2, 420, 240, 90, 20, 2, 924, 660, 330, 110, 22, 2, 1584, 990, 440, 132, 24, 2, 3432, 2574, 1430, 572, 156, 26, 2, 6006, 4004, 2002, 728, 182, 28, 2, 12870, 10010, 6006, 2730
Offset: 0

Views

Author

Keywords

Examples

			This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n):
  x;
  .,  2;
  .,  x,  2;
  .,  .,  6,  2;
  .,  .,  x,  8,  2;
  .,  .,  ., 20, 10,   2;
  .,  .,  .,  x, 30,  12,   2;
  .,  .,  .,  ., 70,  42,  14,    2;
  .,  .,  .,  .,  x, 112,  56,   16,   2;
  .,  .,  .,  .,  ., 252, 168,   72,  18,   2;
  .,  .,  .,  .,  .,   x, 420,  240,  90,  20,   2;
  .,  .,  .,  .,  .,   ., 924,  660, 330, 110,  22,  2;
  .,  .,  .,  .,  .,   .,   x, 1584, 990, 440, 132, 24, 2;
As an irregular triangle:
    2;
    2;
    6,   2;
    8,   2;
   20,  10,   2;
   30,  12,   2;
   70,  42,  14,   2;
  112,  56,  16,   2;
  252, 168,  72,  18,  2;
  420, 240,  90,  20,  2;
  924, 660, 330, 110, 22,  2;
		

Crossrefs

Programs

  • Magma
    [[2*Binomial(n,k): k in [Floor((n+2)/2)..n]]: n in [1..12]]; // G. C. Greubel, Jul 14 2024
    
  • Mathematica
    Table[2*Binomial[n+1, k+1 +Floor[(n+1)/2]], {n,0,12}, {k,0,Floor[n/2] }]//Flatten (* G. C. Greubel, Jul 14 2024 *)
  • SageMath
    def A028326(n,k): return 2*binomial(n, k)
    flatten([[A028326(n,k) for k in range(((n+2)//2), n+1)] for n in range(1,21)]) # G. C. Greubel, Jul 14 2024

Formula

a(n) = 2 * A014413(n). - Sean A. Irvine, Dec 29 2019
From G. C. Greubel, Jul 14 2024: (Start)
T(n, k) = 2*binomial(n+1, k+1 + floor((n+1)/2)) for n >= 0, 0 <= k <= floor(n/2).
Sum_{k=0..floor(n/2)} T(n, k) = A202736(n+1) = 2*A058622(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n, k) = 2*A001405(n) = A063886(n+1). (End)

Extensions

More terms from James Sellers

A028331 Elements to the right of the central elements of the even-Pascal triangle A028326 that are not 2.

Original entry on oeis.org

6, 8, 20, 10, 30, 12, 70, 42, 14, 112, 56, 16, 252, 168, 72, 18, 420, 240, 90, 20, 924, 660, 330, 110, 22, 1584, 990, 440, 132, 24, 3432, 2574, 1430, 572, 156, 26, 6006, 4004, 2002, 728, 182, 28, 12870, 10010, 6006, 2730, 910, 210, 30, 22880, 16016
Offset: 0

Views

Author

Keywords

Examples

			This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n):
  x;
  .,  .;
  .,  x,  .;
  .,  .,  6,  .;
  .,  .,  x,  8,  .;
  .,  .,  ., 20, 10,   .;
  .,  .,  .,  x, 30,  12,   .;
  .,  .,  .,  ., 70,  42,  14,    .;
  .,  .,  .,  .,  x, 112,  56,   16,   .;
  .,  .,  .,  .,  ., 252, 168,   72,  18,   .;
  .,  .,  .,  .,  .,   x, 420,  240,  90,  20,   .;
  .,  .,  .,  .,  .,   ., 924,  660, 330, 110,  22,  .;
  .,  .,  .,  .,  .,   .,   x, 1584, 990, 440, 132, 24, .;
As an irregular triangle:
    6;
    8;
   20,  10;
   30,  12;
   70,  42,  14;
  112,  56,  16;
  252, 168,  72,  18;
  420, 240,  90,  20;
  924, 660, 330, 110, 22;
		

Crossrefs

Programs

  • Magma
    [2*Binomial(n+3,k): k in [Floor((n+5)/2)..n+2], n in [0..12]]; // G. C. Greubel, Jul 14 2024
    
  • Mathematica
    Table[2*Binomial[n+3, k+2 +Floor[(n+1)/2]], {n,0,12}, {k,0,Floor[n/2] }]//Flatten (* G. C. Greubel, Jul 14 2024 *)
  • SageMath
    def A028326(n,k): return 2*binomial(n, k)
    flatten([[A028326(n+1,k) for k in range(((n+3)//2), n+1)] for n in range(21)]) # G. C. Greubel, Jul 14 2024

Formula

From G. C. Greubel, Jul 14 2024: (Start)
T(n, k) = 2*binomial(n+3, k+2 + floor((n+1)/2)).
Sum_{k=0..floor(n/2)} T(n, k) = A272514(n+3).
Sum_{k=0..n} (-1)^k*T(2*n, k) = 2*A286033(n+2).
Sum_{k=0..n} (-1)^k*T(2*n+1, k) = binomial(2*n+4, n+2) + 2*(-1)^n.
(End)

Extensions

More terms from James Sellers

A028332 Distinct elements to the right of the central elements of the even-Pascal triangle A028326.

Original entry on oeis.org

2, 6, 8, 20, 10, 30, 12, 70, 42, 14, 112, 56, 16, 252, 168, 72, 18, 420, 240, 90, 924, 660, 330, 110, 22, 1584, 990, 440, 132, 24, 3432, 2574, 1430, 572, 156, 26, 6006, 4004, 2002, 728, 182, 28, 12870, 10010, 2730, 910, 210, 22880, 16016, 8736, 3640
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Table[2*Binomial[n+1, k+1 +Floor[(n+1)/2]], {n,0,30}, {k,0,Floor[n/2]}]//Flatten] (* G. C. Greubel, Jul 14 2024 *)
  • SageMath
    A028330=flatten([[2*binomial(n+1,k+1+((n+1)//2)) for k in range(1+(n//2))] for n in range(31)])
    def a(seq): # order preserving
        nd = [] # no duplicates
        [nd.append(i) for i in seq if not nd.count(i) and i%2==0]
        return nd
    a(A028330) # A028332 # G. C. Greubel, Jul 14 2024

Extensions

More terms from Asher Auel
Duplicated 20 removed by Sean A. Irvine, Dec 29 2019

A067804 Triangle read by rows: T(n,k) is the number of walks (each step +-1) of length 2n which have a cumulative value of 0 last at step 2k.

Original entry on oeis.org

1, 2, 2, 6, 4, 6, 20, 12, 12, 20, 70, 40, 36, 40, 70, 252, 140, 120, 120, 140, 252, 924, 504, 420, 400, 420, 504, 924, 3432, 1848, 1512, 1400, 1400, 1512, 1848, 3432, 12870, 6864, 5544, 5040, 4900, 5040, 5544, 6864, 12870, 48620, 25740, 20592, 18480
Offset: 0

Views

Author

Henry Bottomley, Feb 07 2002

Keywords

Comments

Since the triangle is symmetric, the probability that a one-dimensional random walk returns to the origin at all in the steps m through to 2m is 1/2 (for m odd).
Diagonal sums are A106183. - Paul Barry, Apr 24 2005

Examples

			Triangle begins:
    1;
    2,   2;
    6,   4,   6;
   20,  12,  12,  20;
   70,  40,  36,  40,  70;
  252, 140, 120, 120, 140, 252;
  ...
For a walk of length 4 (=2*2), 6 are only ever 0 at step 0, 4 are zero at step 2 but not step 4 and 6 are 0 at step 4.
For n=3,k=2, T(3,2)=12 since there are 12 monotonic paths from (0,0) to (2,2) and then on to (3,3). Using E for eastward steps and N for northward steps, the 12 paths are given by EENNNE, ENENNE, ENNENE, NNEENE, NENENE, NEENNE, EENNEN, ENENEN, ENNEEN, NNEEEN, NENEEN, NEENEN. - _Dennis P. Walsh_, Mar 23 2012
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 79, ex. 3f.

Crossrefs

Columns include A000984, A028329. Central diagonal is A002894.

Programs

  • Magma
    /* As triangle */ [[Binomial(2*k, k)*Binomial(2*n-2*k, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 19 2015
  • Mathematica
    Table[Table[Binomial[2k,k]Binomial[2(n-k),n-k],{k,0,n}],{n,0,10}]//Grid  (* Geoffrey Critzer, Jun 30 2013 *)
    T[ n_, k_] := SeriesCoefficient[ D[ InverseJacobiSN[2 x, m] / 2, x], {x, 0, 2 n}, {m, 0, k}]; (* Michael Somos, May 06 2017 *)
  • PARI
    T(n, k) = binomial(2*k, k) * binomial(2*n-2*k, n-k) /* Michael Somos, Aug 20 2005 */
    

Formula

T(n, k) = C(2k, k)*C(2n-2k, n-k) = C(2n, n)*C(n, k)^2/C(2n, 2k) = A000984(k)*A000984(n-k) = A000984(n)*A008459(n, k)/A007318(2n, 2k).
Row sums are 4^n = A000302(n).
G.f.: A(x,y) = 1/sqrt((1-4*x)*(1-4*x*y)). - Vladeta Jovovic, Dec 12 2003
Sum{k>=0} T(n, k)*(-3)^k = (-4)^n * A002426(n). Sum_{k>=0} T(n, k)/(2*k+1) = 2^(4*n)/((2*n+1)*C(2*n, n)). - Philippe Deléham, Dec 31 2003
O.g.f.: A(x,y) = 1 + x*d/dx(log(B(x,y))), where B(x,y) is the o.g.f. of A120406. - Peter Bala, Jul 17 2015

A084868 Main diagonal of symmetric square table A084867, in which the antidiagonal sums (A006012) form the first row shifted left.

Original entry on oeis.org

1, 2, 8, 36, 168, 796, 3800, 18216, 87536, 421292, 2029592, 9784088, 47187536, 227651352, 1098523504, 5301727824, 25590307552, 123529362124, 596337248024, 2878947861432, 13899229883024, 67105641925064, 323993230750672
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003, Jun 11 2003

Keywords

Comments

The Hankel transform (see A001906 for definition) of this sequence is A000302 (powers of 4): 1, 4, 16, 64, 256, 1024, ... - Philippe Deléham, Aug 17 2005

Examples

			1 + 2*x + 8*x^2 + 36*x^3 + 168*x^4 + 796*x^5 + 3800*x^6 + 18216*x^7 + ...
		

Crossrefs

Programs

  • Maple
    1/(1-x/(sqrt(1/4-x))): series(%,x,23): seq(coeff(%,x,n),n=0..22); # Peter Luschny, Feb 06 2017
  • Mathematica
    Table[SeriesCoefficient[((1-4*x)+2*x*Sqrt[1-4*x])/(1-4*x-4*x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff((1 - 4*x + 2*x * sqrt(1 - 4*x + x * O(x^n))) /(1 - 4*x - 4*x^2), n))} /* Michael Somos, Jan 05 2012 */

Formula

Differential equation: (16*x^3 + 12*x^2 - 8*x + 1) * x*(d/dx)A(x) + (8x^3 - 12*x^2 + 6*x - 1) * A(x) + (8x^2 - 6*x + 1) = 0.
G.f.: ((1 - 4*x) + 2*x * sqrt(1 - 4*x)) / (1 - 4*x - 4*x^2). a(n) * (n-1) = a(n-1) * (8*n - 14) - a(n-2) * 12*(n-3) - a(n-3) * 8*(2*n - 5), n > 2. Hankel number wall zig-zag diagonal is A011782. - Michael Somos, Sep 14 2003
INVERT transform of A028329 (offset 1). - Michael Somos, Jan 05 2012
G.f.: (1-2*x*f(x))/(1-2*x*f(x)-2*x) where f(x) is the g.f. of A000108 (Catalan numbers). - Philippe Deléham, Jan 30 2012
a(n) ~ (1-1/sqrt(2))*(2+2*sqrt(2))^n. - Vaclav Kotesovec, Oct 14 2012
From Peter Bala, Feb 05 2017: (Start)
G.f: sqrt(1 - 4*x)/(sqrt(1 - 4*x) - 2*x) = 1/(1 - 2*x/(1 - 2*x/(1 - x/(1 - x/(1 - x/(1 - ...)))))) (continued fraction). Cf. A026671, A081696.
Catalan transform of A006012, that is, equals A106566*A006012, as noted by R. J. Mathar. (End)

A247817 Sum(4^k, k=2..n).

Original entry on oeis.org

0, 16, 80, 336, 1360, 5456, 21840, 87376, 349520, 1398096, 5592400, 22369616, 89478480, 357913936, 1431655760, 5726623056, 22906492240, 91625968976, 366503875920, 1466015503696, 5864062014800, 23456248059216, 93824992236880, 375299968947536, 1501199875790160
Offset: 1

Views

Author

Vincenzo Librandi, Sep 25 2014

Keywords

Crossrefs

Cf. Sum(h^k,k=2..n): A028329 (h=2), A168569 (h=3), this sequence (h=4), A168571 (h=5), A247840 (h=6), A168572 (h=7), A247841 (h=8), A247842 (h=9), A124166 (h=10).

Programs

  • Magma
    [0] cat [&+[4^k: k in [2..n]]: n in [2..30]];
    
  • Magma
    [(4^(n+1)-16)/3: n in [1..30]];
    
  • Mathematica
    RecurrenceTable[{a[1] == 0, a[n] == a[n-1] + 4^n}, a, {n, 30}] (* or *) CoefficientList[ Series[16 x / ((1 - x) (1 - 4 x)),{x, 0, 40}], x]
    LinearRecurrence[{5,-4},{0,16},30] (* Harvey P. Dale, Feb 19 2023 *)
  • PARI
    a(n) = sum(k=2, n, 4^k); \\ Michel Marcus, Sep 25 2014

Formula

G.f.: 16*x^2/((1-x)*(1-4*x)).
a(n) = a(n-1) + 4^n = (4^(n+1) - 16)/3 = 5*a(n-1) - 4*a(n-2).
a(n) = A080674(n) - 4. - Michel Marcus, Sep 25 2014

A240530 a(n) = 4*(2*n)! / (n!)^2.

Original entry on oeis.org

4, 8, 24, 80, 280, 1008, 3696, 13728, 51480, 194480, 739024, 2821728, 10816624, 41602400, 160466400, 620470080, 2404321560, 9334424880, 36300541200, 141381055200, 551386115280, 2153031497760, 8416395854880, 32933722910400, 128990414732400
Offset: 0

Views

Author

Vincenzo Librandi, Apr 12 2014

Keywords

Comments

Apart from first term, the same as A146534. - Arkadiusz Wesolowski, Apr 12 2014

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4*Binomial(2*n,n) ); # G. C. Greubel, Dec 19 2019
  • Magma
    [4*Binomial (2*n,n): n in [0..30]];
    
  • Maple
    seq( 4*binomial(2*n,n), n=0..30); # G. C. Greubel, Dec 19 2019
  • Mathematica
    Table[4*(2*n)!/(n!)^2, {n, 0, 40}] (* or *) CoefficientList[Series[4/Sqrt[1 - 4 x], {x, 0, 50}], x]
  • PARI
    vector(31, n, 4*binomial(2*n-2, n-1)) \\ G. C. Greubel, Dec 19 2019
    
  • Sage
    [4*binomial(2*n,n) for n in (0..30)] # G. C. Greubel, Dec 19 2019
    

Formula

G.f.: 4/sqrt(1-4*x).
a(n) = 4*binomial(2*n, n) = 4*A000984(n) = 2*A028329(n).
D-finite with recurrence: n*a(n) - 2*(2*n-1)*a(n-1) = 0 for n > 0.
Previous Showing 11-20 of 23 results. Next