cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A352665 Maximum number of induced copies of the 4-node path in an n-node graph.

Original entry on oeis.org

0, 0, 0, 1, 5, 9, 16, 32, 48, 80, 112, 160
Offset: 1

Views

Author

Pontus von Brömssen, Mar 26 2022

Keywords

Comments

The sequence (a(n)/binomial(n,4)) is decreasing for n >= 4 and converges to the inducibility of the 4-node path, which is known to be between 1173/5824 = 0.201407... and 0.204513; see Even-Zohar and Linial (2015), who attribute the upper bound to Emil R. Vaughan.

Examples

			All optimal graphs (i.e., n-node graphs having a(n) induced copies of P_4) for 4 <= n <= 9 are listed below. Since P_4 is self-complementary, the optimal graphs come in complementary pairs. Here, ECB(n_1, ..., n_k) denotes the empty cyclic braid graph with cluster sizes n_1, ..., n_k, as defined by Morrison and Scott (2017), i.e., the graph obtained by arranging k clusters of n_1, ..., n_k nodes, respectively, in a cycle, and joining all pairs of nodes in neighboring clusters with edges.
  n = 4: P_4 (self-complementary).
  n = 5: C_5 (self-complementary).
  n = 6: ECB(1, 1, 1, 1, 2) and its complement.
  n = 7: 8 optimal graphs, among them ECB(1, 1, 1, 2, 2) and ECB(1, 1, 2, 1, 2), and their complements. In graph6 format, the optimal graphs are "F?o~_", "FCY^_", "FCpv?", "FCxv?", "FCxvO", "FQjRo", "FQyuo", and "FQyvO".
  n = 8: The antiprism graph and its complement (the Wagner graph).
  n = 9: 22 optimal graphs, among them all graphs that are supergraphs of ECB(1, 2, 2, 2, 2) and subgraphs of its complement (10 graphs altogether), and the 1-skeletons of the Johnson solids J10 (the gyroelongated square pyramid) and J51 (the triaugmented triangular prism) and their complements. In graph6 format, the optimal graphs are "H?bF`xw", "H?o}^_}", "H?o}^bp", "H?q`qjo", "H?q`v`[", "H?rF`zo", "H?rF`zq", "HCRbdO{", "HCXfczo", "HCXfczq", "HCXk~a]", "HCXk~bo", "HCXk~bp", "HCY^fXy", "HCrb`qi", "HCrb`rc", "HEhuTxm", "HEhutxm", "HQjUjqm", "HQyurjU", "HQyurji", and "HQyurzU".
		

Crossrefs

Maximum number of induced copies of other graphs: A028723 (4-node cycle), A111384 (3-node path), A352666 (claw graph), A352667 (paw graph), A352668 (diamond graph), A352669 (cycles).

Extensions

a(10)-a(12) added using tinygraph by Falk Hüffner, Apr 07 2022

A302647 a(n) = (2*n^2*(n^2 - 3) - (2*n^2 + 1)*(-1)^n + 1)/64.

Original entry on oeis.org

0, 0, 2, 6, 18, 36, 72, 120, 200, 300, 450, 630, 882, 1176, 1568, 2016, 2592, 3240, 4050, 4950, 6050, 7260, 8712, 10296, 12168, 14196, 16562, 19110, 22050, 25200, 28800, 32640, 36992, 41616, 46818, 52326, 58482, 64980, 72200, 79800, 88200, 97020, 106722
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 10 2018

Keywords

Comments

Consider the partitions of n into two parts (s,t) where s <= t. Then a(n) represents the total volume of all rectangular prisms with dimensions s, t, and |t-s|.
Take a chessboard of (n+1) X (n+1) unit squares in which the a1 square is black. a(n) is the number of composite rectangles of p X q unit squares whose vertices are covered by white unit squares (1 < p <= n+1, 1 < q <= n+1). For example, in a 4 X 4 chessboard there are two such rectangles (for both rectangles p = q = 3) and the coordinates of their lower left vertices are a2 and b1, i.e., a(3) = 2. For the number of composite rectangles whose vertices are covered by black unit squares see A317714. - Ivan N. Ianakiev, Aug 22 2018
Also the graph crossing number of the (n+2)-barbell graph (assuming Guy's conjecture). - Eric W. Weisstein, May 17 2023

Crossrefs

Positive terms are the third column of the triangle in A145118.

Programs

  • Magma
    [(1/2)*Floor(n/2)*(1+Floor(n/2))*(Floor(n/2)-n)*(1-n+Floor(n/2)): n in [1..45]]; // Vincenzo Librandi, Apr 11 2018
  • Mathematica
    Table[(1/2)*Floor[n/2]*(1 + Floor[n/2])*(Floor[n/2] - n)*(1 - n + Floor[n/2]), {n, 100}]
    LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 2, 6, 18, 36, 72, 120}, 20] (* Eric W. Weisstein, May 17 2023 *)
    Table[(1 - (-1)^n - 2 (3 + (-1)^n) n^2 + 2 n^4)/64, {n, 20}] (* Eric W. Weisstein, May 17 2023 *)
    CoefficientList[Series[-2 x^2 (1 + x + x^2)/((-1 + x)^5 (1 + x)^3), {x, 0, 20}], x] (* Eric W. Weisstein, May 17 2023 *)

Formula

a(n) = Sum_{k=1..floor(n/2)} k * (n-k) * (n-2*k).
a(n) = (1/2)*floor(n/2)*(1+floor(n/2))*(floor(n/2)-n)*(1-n+floor(n/2)).
From Colin Barker, Apr 11 2018: (Start)
G.f.: 2*x^3*(1 + x + x^2) / ((1 - x)^5*(1 + x)^3).
a(n) = n^2*(n-2)*(n+2) / 32 for n even.
a(n) = (n^2 - 1)^2 / 32 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>8. (End)
a(n) = 2 * A028723(n+2). - Alois P. Heinz, Apr 12 2018
a(n) = 2 * binomial(floor((n+1)/2),2) * binomial(floor((n+2)/2),2). - Bruno Berselli, Apr 12 2018
Sum_{n>=3} 1/a(n) = Pi^2/3 - 5/2. - Amiram Eldar, Jun 20 2025

A007333 An upper bound on the biplanar crossing number of the complete graph on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 4, 7, 12, 18, 37, 53, 75, 100, 152, 198, 256, 320, 430, 530, 650, 780, 980, 1165, 1380, 1610, 1939, 2247, 2597, 2968, 3472, 3948, 4480, 5040, 5772, 6468, 7236, 8040, 9060, 10035, 11100, 12210, 13585, 14905, 16335, 17820, 19624, 21362
Offset: 1

Views

Author

Keywords

Comments

This bound in based on a particular decomposition of K_n (see Owens for details). The actual biplanar crossing number for K_9 is 1 (not 4 as given by this bound). - Sean A. Irvine, Dec 30 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,3,-6,3,0,-3,6,-3,0,1,-2,1},{0,0,0,0,0,0,0,0,4,7,12,18,37,53},70] (* Harvey P. Dale, Feb 13 2022 *)
  • PARI
    concat([0,0,0,0,0,0,0,0], Vec(x^9*(4 - x + 2*x^2 + x^3 + x^4) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^3) + O(x^40))) \\ Colin Barker, Feb 02 2020

Formula

a(4*k) = k * (k-1) * (k-2) * (7*k-3) / 6, a(4*k+1) = k * (k-1) * (7*k^2-10*k+4) / 6, a(4*k+2) = k * (k-1) * (7*k^2-3*k-1) / 6, a(4*k+3) = k^2 * (k-1) * (7*k+4) / 6 [from Owens]. - Sean A. Irvine, Dec 30 2019; [typo corrected by Colin Barker, Feb 01 2020]
From Colin Barker, Jan 28 2020: (Start)
G.f.: x^9*(4 - x + 2*x^2 + x^3 + x^4) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^3).
a(n) = 2*a(n-1) - a(n-2) + 3*a(n-4) - 6*a(n-5) + 3*a(n-6) - 3*a(n-8) + 6*a(n-9) - 3*a(n-10) + a(n-12) - 2*a(n-13) + a(n-14) for n>14.
(End)

Extensions

More terms and title clarified by Sean A. Irvine, Dec 30 2019

A011845 a(n) = floor( binomial(n,8)/9).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 18, 55, 143, 333, 715, 1430, 2701, 4862, 8398, 13996, 22610, 35530, 54479, 81719, 120175, 173586, 246675, 345345, 476905, 650325, 876525, 1168700, 1542684, 2017356, 2615091, 3362260, 4289780, 5433721, 6835972, 8544965, 10616471
Offset: 0

Views

Author

Keywords

Crossrefs

A column of triangle A011847.

Programs

Formula

a(n) = floor(binomial(n+1,9)/(n+1)). [Gary Detlefs, Nov 23 2011]

Extensions

Definition corrected by Pedro Antonio, Oct 14 2015
More terms from Vincenzo Librandi, Oct 15 2015

A331575 a(n) is the number of subsets of {1..n} that contain 4 even and 4 odd numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 25, 75, 225, 525, 1225, 2450, 4900, 8820, 15876, 26460, 44100, 69300, 108900, 163350, 245025, 353925, 511225, 715715, 1002001, 1366365, 1863225, 2484300, 3312400, 4331600, 5664400, 7282800, 9363600, 11860560, 15023376, 18779220, 23474025, 28997325
Offset: 0

Views

Author

Enrique Navarrete, Jan 20 2020

Keywords

Examples

			a(9)=5 and the 5 subsets are {1,2,3,4,5,6,7,8}, {1,2,3,4,5,6,8,9}, {1,2,3,4,6,7,8,9}, {1,2,4,5,6,7,8,9}, {2,3,4,5,6,7,8,9}.
		

Crossrefs

Cf. A288876 (even bisection, shifted).

Programs

  • Magma
    [IsEven(n) select Binomial((n div 2),4)^2 else Binomial((n-1) div 2,4)*Binomial((n+1) div 2,4): n in [0..41]]; // Marius A. Burtea, Jan 21 2020
  • Maple
    a:= n-> ((b, q)-> b(q, 4)*b(n-q, 4))(binomial, iquo(n, 2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 30 2020
  • Mathematica
    a[n_] := If[OddQ[n], Binomial[(n - 1)/2, 4]*Binomial[(n + 1)/2, 4], Binomial[n/2, 4]^2]; Array[a, 42, 0] (* Amiram Eldar, Jan 21 2020 *)
    LinearRecurrence[{2,6,-14,-14,42,14,-70,0,70,-14,-42,14,14,-6,-2,1},{0,0,0,0,0,0,0,0,1,5,25,75,225,525,1225,2450},50] (* Harvey P. Dale, Jul 20 2025 *)
  • PARI
    a(n) = if (n%2, binomial((n-1)/2,4)*binomial((n+1)/2,4), binomial(n/2,4)^2); \\ Michel Marcus, Jan 21 2020
    
  • PARI
    concat([0,0,0,0,0,0,0,0], Vec(x^8*(1 + 3*x + 9*x^2 + 9*x^3 + 9*x^4 + 3*x^5 + x^6) / ((1 - x)^9*(1 + x)^7) + O(x^40))) \\ Colin Barker, Jan 21 2020
    

Formula

a(n) = binomial(n/2,4)^2, n even;
a(n) = binomial((n-1)/2,4)*binomial((n+1)/2,4), n odd.
From Colin Barker, Jan 21 2020: (Start)
G.f.: x^8*(1 + 3*x + 9*x^2 + 9*x^3 + 9*x^4 + 3*x^5 + x^6) / ((1 - x)^9*(1 + x)^7).
a(n) = 2*a(n-1) + 6*a(n-2) - 14*a(n-3) - 14*a(n-4) + 42*a(n-5) + 14*a(n-6) - 70*a(n-7) + 70*a(n-9) - 14*a(n-10) - 42*a(n-11) + 14*a(n-12) + 14*a(n-13) - 6*a(n-14) - 2*a(n-15) + a(n-16) for n>15.
(End)
E.g.f.: (cosh(x)-sinh(x))*(1575+1350*x+630*x^2+204*x^3+54*x^4+12*x^5+4*x^6+(-1575+1800*x-1080*x^2+456*x^3-156*x^4+48*x^5-16*x^6+8*x^7+2*x^8)*(cosh(2*x)+sinh(2*x)))/294912. - Stefano Spezia, Jan 27 2020

A172101 Triangle, read by rows, given by [0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, ...] DELTA [1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 4, 2, 1, 0, 1, 3, 6, 6, 3, 1, 0, 1, 3, 9, 9, 9, 3, 1, 0, 1, 4, 12, 18, 18, 12, 4, 1, 0, 1, 4, 16, 24, 36, 24, 16, 4, 1, 0, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 0, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 0, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2010

Keywords

Comments

Number of symmetric Dyck paths of semilength n with k peaks.

Examples

			Triangle begins :
  1;
  0,  1;
  0,  1,  1;
  0,  1,  1,  1;
  0,  1,  2,  2,  1;
  0,  1,  2,  4,  2,   1;
  0,  1,  3,  6,  6,   3,   1;
  0,  1,  3,  9,  9,   9,   3,   1;
  0,  1,  4, 12, 18,  18,  12,   4,   1;
  0,  1,  4, 16, 24,  36,  24,  16,   4,  1;
  0,  1,  5, 20, 40,  60,  60,  40,  20,  5,  1;
  0,  1,  5, 25, 50, 100, 100, 100,  50, 25,  5,  1;
  0,  1,  6, 30, 75, 150, 200, 200, 150, 75, 30,  6,  1;
		

Crossrefs

Cf. A001405 (row sums), A005566, A084938, A088518 (diagonal sums), A088855.
Column k: A000007 (k=0), A000012 (k=1), A008619 (k=2), A002620 (k=3), A028724 (k=4), A028723 (k=5), A028725 (k=6), A331574 (k=7).

Programs

  • Magma
    [n eq 0 select 1 else (&*[Binomial(Floor((n-j)/2), Floor((k-j)/2)): j in [0..1]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 08 2022
    
  • Mathematica
    T[n_, k_]:= Product[Binomial[Floor[(n-j)/2], Floor[(k-j)/2]], {j,0,1}];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2022 *)
  • Sage
    def A172101(n,k):
        if (n==0): return 1
        else: return product(binomial( (n-j)//2, (k-j)//2 ) for j in (0..1))
    flatten([[A172101(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 08 2022

Formula

Sum_{k=0..n} T(n,k) = A001405(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] - [n=1] + A088518(n)*[n >= 1].
From G. C. Greubel, Apr 08 2022: (Start)
T(n, k) = binomial(floor((n-1)/2), floor((k-1)/2))*binomial(floor(n/2), floor(k/2)).
T(2*n, n) = [n=0] + A005566(n-1)*[n >= 1].
T(n-1, n-k) = T(n-1, k), n >= 1, 1 <= k <= n. (End)

A303231 Total volume of all rectangular prisms with dimensions q, p+q and |q-p| such that p and q are prime, n = p+q and p < q.

Original entry on oeis.org

0, 0, 0, 0, 15, 0, 105, 80, 315, 280, 0, 168, 1287, 1232, 2145, 3136, 0, 2664, 4845, 6320, 6783, 11176, 0, 11088, 12075, 17888, 0, 14448, 0, 17640, 24273, 27776, 29667, 62560, 0, 61632, 0, 28272, 50505, 76720, 0, 99120, 68757, 141944, 79335, 163024, 0
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 20 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[(n - i) (n - 2 i) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i] - PrimePi[n - i - 1]), {i, Floor[(n - 1)/2]}], {n, 80}]
  • PARI
    a(n) = n*sum(i=1, (n-1)\2, (n-i)*(n-2*i)*isprime(i)*isprime(n-i)); \\ Michel Marcus, Apr 21 2018

Formula

a(n) = n * Sum_{i=1..floor((n-1)/2)} (n-i) * (n-2*i) * c(i) * c(n-i), where c is the prime characteristic (A010051).

A331576 a(n) is the number of subsets of {1..n} that contain 5 even and 5 odd numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 36, 126, 441, 1176, 3136, 7056, 15876, 31752, 63504, 116424, 213444, 365904, 627264, 1019304, 1656369, 2576574, 4008004, 6012006, 9018009, 13117104, 19079424, 27029184, 38291344, 53018784, 73410624, 99628704, 135210384, 180280512, 240374016, 315490896
Offset: 0

Views

Author

Enrique Navarrete, Jan 20 2020

Keywords

Comments

In general, the number of subsets of {1..n} that contain k even and k odd numbers is given by binomial(n/2, k)^2 for n even and binomial((n-1)/2, k)*binomial((n+1)/2, k) for n odd.

Examples

			a(11)=6 and the 6 subsets are {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,10,11}, {1,2,3,4,5,6,8,9,10,11}, {1,2,3,4,6,7,8,9,10,11}, {1,2,4,5,6,7,8,9,10,11}, {2,3,4,5,6,7,8,9,10,11}.
		

Crossrefs

Cf. A028723 (k=2), A331574 (k=3), A331575 (k=4). See comment.

Programs

  • Magma
    [IsOdd(n) select Binomial((n-1) div 2,5)*Binomial((n+1) div 2,5) else Binomial(n div 2,5)^2: n in [0..41]]; // Marius A. Burtea, Jan 21 2020
  • Maple
    a:= n-> ((b, q)-> b(q, 5)*b(n-q, 5))(binomial, iquo(n, 2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 30 2020
  • Mathematica
    a[n_] := If[OddQ[n], Binomial[(n - 1)/2, 5]*Binomial[(n + 1)/2, 5], Binomial[n/2, 5]^2]; Array[a, 42, 0] (* Amiram Eldar, Jan 21 2020 *)
  • PARI
    concat([0,0,0,0,0,0,0,0,0,0], Vec(x^10*(1 + 4*x + 16*x^2 + 24*x^3 + 36*x^4 + 24*x^5 + 16*x^6 + 4*x^7 + x^8) / ((1 - x)^11*(1 + x)^9) + O(x^40))) \\ Colin Barker, Jan 21 2020
    

Formula

a(n) = binomial(n/2, 5)^2, for n even;
a(n) = binomial((n-1)/2, 5)*binomial((n+1)/2,5), for n odd.
From Colin Barker, Jan 21 2020: (Start)
G.f.: x^10*(1 + 4*x + 16*x^2 + 24*x^3 + 36*x^4 + 24*x^5 + 16*x^6 + 4*x^7 + x^8) / ((1 - x)^11*(1 + x)^9).
a(n) = 2*a(n-1) + 8*a(n-2) - 18*a(n-3) - 27*a(n-4) + 72*a(n-5) + 48*a(n-6) - 168*a(n-7) - 42*a(n-8) + 252*a(n-9) - 252*a(n-11) + 42*a(n-12) + 168*a(n-13) - 48*a(n-14) - 72*a(n-15) + 27*a(n-16) + 18*a(n-17) - 8*a(n-18) - 2*a(n-19) + a(n-20) for n>19.
(End)
E.g.f.: (cosh(x) - sinh(x))*(99225 + 88200*x + 40950*x^2 + 13050*x^3 + 3225*x^4 + 660*x^5 + 120*x^6 + 20*x^7 + 5*x^8 + (-99225 + 110250*x - 63000*x^2 + 24750*x^3 - 7575*x^4 + 1950*x^5 - 450*x^6 + 100*x^7 - 25*x^8 + 10*x^9 + 2*x^10)*(cosh(2*x) + sinh(2*x)))/29491200. - Stefano Spezia, Jan 27 2020

A307891 Rectilinear crossing number A014540(n) - crossing number A000241(n) of complete graph on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 3, 4, 9, 6, 15, 14, 21, 22, 37, 30, 53, 52, 69, 74, 102, 96
Offset: 1

Views

Author

Ed Pegg Jr, May 03 2019

Keywords

Examples

			For 8 nodes the crossing number is 18 and the rectilinear crossing number is 19.  The difference for 8 nodes is 1.  Thus a(8)=1.
		

Crossrefs

Previous Showing 11-19 of 19 results.