cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A016910 a(n) = (6*n)^2.

Original entry on oeis.org

0, 36, 144, 324, 576, 900, 1296, 1764, 2304, 2916, 3600, 4356, 5184, 6084, 7056, 8100, 9216, 10404, 11664, 12996, 14400, 15876, 17424, 19044, 20736, 22500, 24336, 26244, 28224, 30276, 32400, 34596, 36864, 39204, 41616, 44100, 46656, 49284, 51984, 54756, 57600, 60516, 63504, 66564, 69696, 72900
Offset: 0

Views

Author

Keywords

Comments

Areas A of two classes of triangles with integer sides (a,b,c) where a = 9k, b=10k and c = 17k, or a = 3k, b = 25k and c = 26k for k=0,1,2,... These areas are given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) = (6k)^2, with the semiperimeter s = (a+b+c)/2. This sequence is a subsequence of A188158. - Michel Lagneau, Oct 11 2013
Sequence found by reading the line from 0, in the direction 0, 36, ..., in the square spiral whose vertices are the generalized 20-gonal numbers A218864. - Omar E. Pol, May 13 2018.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30).

Programs

Formula

From Ilya Gutkovskiy, Jun 09 2016: (Start)
O.g.f.: 36*x*(1 + x)/(1 - x)^3.
E.g.f.: 36*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Sum_{n>=1} 1/a(n) = Pi^2/216 = A086726. (End)
Product_{n>=1} a(n)/A136017(n) = Pi/3. - Fred Daniel Kline, Jun 09 2016
a(n) = t(9*n) - 9*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(9*n) - 9*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = 36*A000290(n) = 18*A001105(n) = 12*A033428 = 9*A016742(n) = 6*A033581(n) = 4*A016766(n) = 3*A135453(n) = 2*A195321(n). - Omar E. Pol, Jun 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/432. - Amiram Eldar, Jun 27 2020
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/6)/(Pi/6).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/6)/(Pi/6) = 3/Pi (A089491). (End)

A244636 a(n) = 30*n^2.

Original entry on oeis.org

0, 30, 120, 270, 480, 750, 1080, 1470, 1920, 2430, 3000, 3630, 4320, 5070, 5880, 6750, 7680, 8670, 9720, 10830, 12000, 13230, 14520, 15870, 17280, 18750, 20280, 21870, 23520, 25230, 27000, 28830, 30720, 32670, 34680, 36750, 38880, 41070, 43320, 45630, 48000, 50430
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 30, ..., in the square spiral whose vertices are the generalized 17-gonal numbers. - Omar E. Pol, Jul 03 2014

Crossrefs

Cf. similar sequences listed in A244630.

Programs

  • Magma
    [30*n^2: n in [0..40]];
    
  • Maple
    A244636:=n->30*n^2: seq(A244636(n), n=0..50); # Wesley Ivan Hurt, Jul 04 2014
  • Mathematica
    Table[30 n^2, {n, 0, 40}]
    CoefficientList[Series[30x (1+x)/(1-x)^3,{x,0,50}],x] (* or *) LinearRecurrence[ {3,-3,1},{0,30,120},50] (* Harvey P. Dale, Dec 02 2021 *)
  • PARI
    a(n)=30*n^2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: 30*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 30*A000290(n) = 15*A001105(n) = 10*A033428(n) = 6*A033429(n) = 5*A033581(n) = 3*A033583(n) = 2*A064761(n). - Omar E. Pol, Jul 03 2014
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 30*x*(1 + x)*exp(x).
a(n) = n*A249674(n) = A330451(3*n). (End)

A202803 a(n) = n*(5*n+1).

Original entry on oeis.org

0, 6, 22, 48, 84, 130, 186, 252, 328, 414, 510, 616, 732, 858, 994, 1140, 1296, 1462, 1638, 1824, 2020, 2226, 2442, 2668, 2904, 3150, 3406, 3672, 3948, 4234, 4530, 4836, 5152, 5478, 5814, 6160, 6516, 6882, 7258, 7644, 8040, 8446, 8862, 9288, 9724, 10170
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

First bisection of A219190. - Bruno Berselli, Nov 15 2012
a(n)*Pi is the total length of 5 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A017341. The spiral length ratio rounded down [floor(L(n)/L(1))] is A032793. See illustration in links. - Kival Ngaokrajang, Dec 27 2013

Examples

			G.f. = 6*x + 22*x^2 + 48*x^3 + 84*x^4 + 130*x^5 +186*x^6 + 252*x^7 + 328*x^8 + ...
		

Crossrefs

Cf. sequences listed in A254963.

Programs

Formula

a(n) = 5*n^2 + n.
a(n) = A033429(n) + n. - Omar E. Pol, Dec 24 2011
G.f.: 2*x*(3+2*x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 6, a(2) = 22. - Philippe Deléham, Mar 27 2013
a(n) = A131242(10n+5). - Philippe Deléham, Mar 27 2013
a(n) = 2*A005475(n). - Philippe Deléham, Mar 27 2013
a(n) = A168668(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = (n+1)^3 - (1 + n + n*(n-1) + n*(n-1)*(n-2)). - Michael Somos, Aug 10 2014
E.g.f.: x*(6+5*x)*exp(x). - G. C. Greubel, Aug 22 2017
Sum_{n>=1} 1/a(n) = 5*(1-log(5)/4) - sqrt(1+2/sqrt(5))*Pi/2 -sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Jul 19 2022

A212656 a(n) = 5*n^2 + 1.

Original entry on oeis.org

1, 6, 21, 46, 81, 126, 181, 246, 321, 406, 501, 606, 721, 846, 981, 1126, 1281, 1446, 1621, 1806, 2001, 2206, 2421, 2646, 2881, 3126, 3381, 3646, 3921, 4206, 4501, 4806, 5121, 5446, 5781, 6126, 6481, 6846, 7221, 7606, 8001, 8406, 8821, 9246, 9681, 10126, 10581, 11046, 11521, 12006, 12501
Offset: 0

Views

Author

Alonso del Arte, May 23 2012

Keywords

Comments

Z[sqrt(-5)] is not a unique factorization domain, and some of the numbers in this sequence have two different factorizations in that domain, e.g., 21 = 3 * 7 = (1 + 2*sqrt(-5))*(1 - 2*sqrt(-5)). And of course some primes in Z are composite in Z[sqrt(-5)], like 181 = (1 + 6*sqrt(-5))*(1 - 6*sqrt(-5)).
These are pentagonal-star numbers. - Mario Cortés, Oct 26 2020

References

  • Benjamin Fine & Gerhard Rosenberger, Number Theory: An Introduction via the Distribution of Primes, Boston: Birkhäuser, 2007, page 268.

Crossrefs

Cf. A137530 (primes of the form 1+5*n^2).

Programs

Formula

a(n) = 5*n^2 + 1 = (1 + n*sqrt(-5))*(1 - n*sqrt(-5)).
G.f.: (1+3*x+6*x^2)/(1-x)^3. - Bruno Berselli, May 23 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 10 2012
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(5))*coth(Pi/sqrt(5)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(5))*csch(Pi/sqrt(5)))/2. (End)
a(n) = A005891(n-1) + 5*A000217(n). - Mario Cortés, Oct 26 2020
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(5))*sinh(sqrt(2/5)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(5))*csch(Pi/sqrt(5)).(End)
E.g.f.: exp(x)*(1 + 5*x + 5*x^2). - Stefano Spezia, Feb 05 2021

A249327 Rectangular array T(n,k) = f(n)*k^2, where f = A005117 (squarefree numbers); n, k >= 1; read by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 8, 3, 16, 18, 12, 5, 25, 32, 27, 20, 6, 36, 50, 48, 45, 24, 7, 49, 72, 75, 80, 54, 28, 10, 64, 98, 108, 125, 96, 63, 40, 11, 81, 128, 147, 180, 150, 112, 90, 44, 13, 100, 162, 192, 245, 216, 175, 160, 99, 52, 14, 121, 200, 243, 320, 294, 252, 250
Offset: 1

Views

Author

Clark Kimberling, Oct 26 2014

Keywords

Comments

Every positive integer occurs exactly once.

Examples

			Northwest corner:
1   4    9    16   25    36    49
2   8    18   32   50    72    98
3   12   27   48   75    108   147
5   20   45   80   125   180   245
6   24   54   96   150   216   294
		

Crossrefs

Cf. A005117, A000037 (is partitioned by the rows of A249327, excluding the first).

Programs

  • Mathematica
    z = 20; f = Select[Range[10000], SquareFreeQ[#] &];
    u[n_, k_] := f[[n]]*k^2; t = Table[u[n, k], {n, 1, 20}, {k, 1, 20}];
    TableForm[t] (* A249327 array *)
    Table[u[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* A249327 sequence *)

Formula

T(1,k) = A000290(k), T(2,k) = A001105(k), T(3,k) = A033428(k), T(4,k) = A033429(k), T(5,.) through T(10,.) are A033581, A033582, A033583, A033584, A152742 and A144555 without initial 0. - M. F. Hasler, Oct 31 2014

A352273 Numbers whose squarefree part is congruent to 5 modulo 6.

Original entry on oeis.org

5, 11, 17, 20, 23, 29, 35, 41, 44, 45, 47, 53, 59, 65, 68, 71, 77, 80, 83, 89, 92, 95, 99, 101, 107, 113, 116, 119, 125, 131, 137, 140, 143, 149, 153, 155, 161, 164, 167, 173, 176, 179, 180, 185, 188, 191, 197, 203, 207, 209, 212, 215, 221, 227, 233, 236, 239, 245, 251
Offset: 1

Views

Author

Peter Munn, Mar 10 2022

Keywords

Comments

Numbers of the form 4^i * 9^j * (6k+5), i, j, k >= 0.
1/5 of each multiple of 5 in A352272.
The product of any two terms is in A352272.
The product of a term of this sequence and a term of A352272 is a term of this sequence.
The positive integers are usefully partitioned as {A352272, 2*A352272, 3*A352272, 6*A352272, {a(n)}, 2*{a(n)}, 3*{a(n)}, 6*{a(n)}}. There is a table in the example section giving sequences formed from unions of the parts.
The parts correspond to the cosets of A352272 considered as a subgroup of the positive integers under the operation A059897(.,.). Viewed another way, the parts correspond to the intersection of the integers with the cosets of the multiplicative subgroup of the positive rationals generated by the terms of A352272.
The asymptotic density of this sequence is 1/4. - Amiram Eldar, Apr 03 2022

Examples

			The squarefree part of 11 is 11, which is congruent to 5 (mod 6), so 11 is in the sequence.
The squarefree part of 15 is 15, which is congruent to 3 (mod 6), so 15 is not in the sequence.
The squarefree part of 20 = 2^2 * 5 is 5, which is congruent to 5 (mod 6), so 20 is in the sequence.
The table below lists OEIS sequences that are unions of the cosets described in the initial comments, and indicates the cosets included in each sequence. A352272 (as a subgroup) is denoted H, and this sequence (as a coset) is denoted H/5, in view of its terms being one fifth of the multiples of 5 in A352272.
             H    2H    3H    6H    H/5  2H/5  3H/5  6H/5
A003159      X           X           X           X
A036554            X           X           X           X
.
A007417      X     X                 X     X
A145204\{0}              X     X                 X     X
.
A026225      X           X                 X           X
A026179\{1}        X           X     X           X
.
A036668      X                 X     X                 X
A325424            X     X                 X     X
.
A055047      X                             X
A055048            X                 X
A055041                  X                             X
A055040                        X                 X
.
A189715      X                 X           X     X
A189716            X     X           X                 X
.
A225837      X     X     X     X
A225838                              X     X     X     X
.
A339690      X                       X
A329575                  X                       X
.
A352274      X           X
(The sequence groupings in the table start with the subgroup of the quotient group of H, followed by its cosets.)
		

Crossrefs

Intersection of any three of A003159, A007417, A189716 and A225838.
Intersection of A036668 and A055048.
Complement within A339690 of A352272.
Closure of A084088 under multiplication by 9.
Other subsequences: A033429\{0}, A016969.
Other sequences in the example table: A036554, A145204, A026179, A026225, A325424, A055040, A055041, A055047, A189715, A225837, A329575, A352274.

Programs

  • Mathematica
    q[n_] := Module[{e2, e3}, {e2, e3} = IntegerExponent[n, {2, 3}]; EvenQ[e2] && EvenQ[e3] && Mod[n/2^e2/3^e3, 6] == 5]; Select[Range[250], q] (* Amiram Eldar, Apr 03 2022 *)
  • PARI
    isok(m) = core(m) % 6 == 5;
    
  • Python
    from itertools import count
    def A352273(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in count(0):
                i2 = 9**i
                if i2>x: break
                for j in count(0,2):
                    k = i2<x: break
                    c -= (x//k-5)//6+1
            return c
        return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025

Formula

{a(n) : n >= 1} = {m >= 1 : A007913(m) == 5 (mod 6)}.
{a(n) : n >= 1} = A334832/5 U A334832/11 U A334832/17 U A334832/23 where A334832/k denotes {A334832(m)/k : m >= 1, k divides A334832(m)}.
Using the same notation, {a(n) : n >= 1} = A352272/5 = {A307151(A352272(m)) : m >= 1}.
{A225838(n) : n >= 1} = {m : m = a(j)*k, j >= 1, k divides 6}.

A091729 Norms of prime elements of Z[sqrt(-5)].

Original entry on oeis.org

5, 29, 41, 61, 89, 101, 109, 121, 149, 169, 181, 229, 241, 269, 281, 289, 349, 361, 389, 401, 409, 421, 449, 461, 509, 521, 541, 569, 601, 641, 661, 701, 709, 761, 769, 809, 821, 829, 881, 929, 941, 961, 1009
Offset: 1

Views

Author

Paul Boddington, Feb 02 2004

Keywords

Comments

Consists of those primes congruent to 1, 5, 9 (mod 20) together with the squares of those primes congruent to -1, -3, -7, -9 (mod 20). Suppose n appears in this sequence. Then the number of prime elements of norm n is 2 if n is 5 or a square and 4 otherwise.

References

  • David A. Cox, Primes of the form x^2+ny^2, Wiley, 1989.
  • A. Frohlich and M. J. Taylor, Algebraic number theory, Cambridge university press, 1991.

Crossrefs

Cf. A033205 (a subset), A033429, A038872.
The sequence of norms of prime ideals in the ring Z[sqrt(-5)] is A091727.

Programs

  • PARI
    list(lim)=my(v=List([5]),t); forprime(p=29,lim, t=p%20; if(t==1||t==9, listput(v,p))); forprime(p=11,sqrtint(lim\1), t=p%20; if(t==11||t==13||t==17||t==19, listput(v,p^2))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Extensions

a(43) corrected by Charles R Greathouse IV, Feb 09 2017

A127561 Array T(n,k) = n^2+5*n*k+5*k^2 read downwards antidiagonals, n,k>=0.

Original entry on oeis.org

0, 5, 1, 20, 11, 4, 45, 31, 19, 9, 80, 61, 44, 29, 16, 125, 101, 79, 59, 41, 25, 180, 151, 124, 99, 76, 55, 36, 245, 211, 179, 149, 121, 95, 71, 49, 320, 281, 244, 209, 176, 145, 116, 89, 64, 405, 361, 319, 279, 241, 205, 171, 139, 109, 81, 500, 451, 404, 359, 316, 275, 236, 199, 164, 131
Offset: 0

Views

Author

Kenneth J Ramsey, Jan 18 2007, Feb 05 2007, Feb 06 2007

Keywords

Comments

Lattice table of Fibonacci characteristic values from Wechsler's J determinant sequence A022344 uniquely position such that the row and column determine starting a,b values of a Fibonacci sequence having the same characteristic value.
A vector from (0,0) to any prime value P in the array does not pass through any other lattice point. If that vector is extended it passes through lattice points having successively the values 0, P*1^2, P*2^2, P*3^2, P*4^2 ... All primes ending in 1, 5 and 9 or the product thereof appear in the array, no prime ending in 3 or 7 appears in the array except in a square product which may be multiplied by a squarefree product of primes ending in 1, 5 or 9.
The table can be expanded by allowing negative arguments in the formula, but any positive value obtained can be expressed with nonnegative arguments.
The second row is the sequence A062786. The term in every succeeding row is 2* the term immediately above minus the next above term plus 2.
If the table is rearranged by shifting each column down by twice the column number, then the terms in second column would be equal to the row number squared plus the row number minus 1 and every succeeding term to the right would be equal to twice the left-hand term minus the next left-hand term minus 2.
It appears that any prime ending in 1,5, or 9 or any such prime times 5 appears only once in the table and that every power of such a prime or product thereof has one and only one nonnegative row and column position such that the row and column positions are coprime. A method for finding a coprime row and column position of the 2^n th power of any prime ending in 1,5,or 9, or of the product thereof, from the coprime row and column position of that prime or product is suggested by the discussion in the link titled "Wythoff Array, Pythagorean Triples, Primes".
It seems that if you stack the row and column positions of two numbers in the array that the determinant gives a column in which the product appears. Thus since the row and column position of 29 and 41 are 3,1 and 4,1 respectively then the product (41*29) appears in column 1*4 - 3*1 or column 1. The same value appears also in column -1 so 3*1-1*4 is a valid answer also. For our purposes however we choose the order that gives a positive value. Once the column number of the product is known it is easy to find the row number. There may be new determinant based math to find the row directly, but I don't know of any. It may happen that the row is negative, in which case the following transformation works a(r,c) = a(-r,c+r). Applied twice this transformation gives the original starting pair. I have yet to find any case in which one starts out with positive values for the row and column of each factor of a number appearing in the table and using the above determinant math cannot find positive values for the row and column of the product. I posted a few interesting results in the Cut-the-knot forum. Use the link given previously.

Examples

			T(0,1) = 5 because (0+2*1)^2 + 1*(0+2*1) - 1^2 = 5 and also because the Fibonacci sequence having the Horadam ID {a,b,1,1} with a = 0+2*1 and b = 1 has the characteristic value a^2 + b*a - b^2.
  0,  5, 20, 45, 80,125,180,245,320,405,500,... A033429
  1, 11, 31, 61,101,151,211,281,361,451,551,..  A062786
  4, 19, 44, 79,124,179,244,319,404,499,604,..  A134538
  9, 29, 59, 99,149,209,279,359,449,549,659,... A143198 (row 9)
 16, 41, 76,121,176,241,316,401,496,601,716,...
 25, 55, 95,145,205,275,355,445,545,655,775,..
 36, 71,116,171,236,311,396,491,596,711,836,...
 49, 89,139,199,269,349,439,539,649,769,899,...
 64,109,164,229,304,389,484,589,704,829,964,...
 81,131,191,261,341,431,531,641,761,891,1031,...
100,155,220,295,380,475,580,695,820,955,1100,...
		

Crossrefs

Formula

T(a,b) = (a+2b)^2 + b(a+2b) - b^2.

A269792 a(n) = 5*n^4.

Original entry on oeis.org

0, 5, 80, 405, 1280, 3125, 6480, 12005, 20480, 32805, 50000, 73205, 103680, 142805, 192080, 253125, 327680, 417605, 524880, 651605, 800000, 972405, 1171280, 1399205, 1658880, 1953125, 2284880, 2657205, 3073280, 3536405, 4050000, 4617605, 5242880, 5929605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*n^m, is k*Sum_{j>=1}x^j*j^m (when abs(x)<1).
More generally, the ordinary generating function for the values of quartic polynomial p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (p + q + k + m - 4*r)*x + (11*p + 3*q - k - 3*m + 6*r)*x^2 + (11*p - 3*q - k + 3*m - 4*r)*x^3 + (p - q + k - m + r)*x^4)/(1 - x)^5.

Crossrefs

Cf. similar sequences of the form k*n^m, for k = 1...5, m = 1...10: A001477(k = 1, m = 1), A005843 (k = 2, m = 1), A008585 (k = 3, m = 1), A008586 (k = 4, m = 1), A008587 (k = 5, m = 1), A000290 (k = 1, m = 2), A001105 (k = 2, m = 2), A033428 (k = 3, m = 2), A016742 (k = 4, m = 2), A033429 (k = 5, m = 2), A000578 (k = 1, m = 3), A033431 (k = 2, m = 3), A117642 (k = 3, m = 3), A033430 (k = 4, m = 3), A244725 (k = 5, m = 3), A000583 (k = 1, m = 4), A244730 (k = 2, m = 4), A219056 (k = 3, m = 4), A141046 (k = 4, m = 4), this sequence(k = 5, m = 4), A000584 (k = 1, m = 5), A001014 (k = 1, m = 6), A106318 (k = 2, m = 6), A001015 (k = 1, m = 7), A001016 (k = 1, m = 8), A001017 (k = 1, m = 9), A008454 (k = 1, m = 10).

Programs

  • Maple
    A269792:=n->5*n^4: seq(A269792(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[5 n^4, {n, 0, 33}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 80, 405, 1280}, 34]
  • PARI
    x='x+O('x^99); concat(0, Vec(5*x*(1+11*x+11*x^2+x^3)/(1-x)^5)) \\ Altug Alkan, Mar 31 2016

Formula

G.f.: 5*x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5.
E.g.f.: 5*exp(x)^x*x*(1 + 7*x + 6*x^2 + x^3).
a(n) = 5*a(n-1) - 10*(9n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 5*A000583(n) = A008587(n)*A000578(n).
Sum_{n>=1} 1/a(n) = Pi^4/450 = (1/450)*A092425 = 0.216464646742...

A279895 a(n) = n*(5*n + 11)/2.

Original entry on oeis.org

0, 8, 21, 39, 62, 90, 123, 161, 204, 252, 305, 363, 426, 494, 567, 645, 728, 816, 909, 1007, 1110, 1218, 1331, 1449, 1572, 1700, 1833, 1971, 2114, 2262, 2415, 2573, 2736, 2904, 3077, 3255, 3438, 3626, 3819, 4017, 4220, 4428, 4641, 4859, 5082, 5310, 5543, 5781, 6024, 6272, 6525
Offset: 0

Views

Author

Bruno Berselli, Dec 22 2016

Keywords

Crossrefs

Second bisection of A165720.
The first differences are in A016885.
Cf. similar sequences provided by P(s,m)+s*m, where P(s,m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number: A008585 (s=2), A055999 (s=3), A028347 (s=4), A140091 (s=5), A033537 (s=6), this sequence (s=7), A067725 (s=8).

Programs

  • Magma
    [n*(5*n+11)/2: n in [0..60]];
  • Mathematica
    Table[n (5 n + 11)/2, {n, 0, 60}]
    LinearRecurrence[{3,-3,1},{0,8,21},60] (* Harvey P. Dale, Nov 14 2022 *)
  • PARI
    vector(60, n, n--; n*(5*n+11)/2)
    
  • Python
    [n*(5*n+11)/2 for n in range(60)]
    
  • Sage
    [n*(5*n+11)/2 for n in range(60)]
    

Formula

O.g.f.: x*(8 - 3*x)/(1 - x)^3.
E.g.f.: x*(16 + 5*x)*exp(x)/2.
a(n+h) - a(n-h) = h*A017281(n+1), with h>=0. A particular case:
a(n) - a(-n) = 11*n = A008593(n).
a(n+h) + a(n-h) = 2*a(n) + A033429(h), with h>=0. A particular case:
a(n) + a(-n) = A033429(n).
a(n) - a(n-2) = A017281(n) for n>1. Also:
40*a(n) + 121 = A017281(n+1)^2.
a(n) = A000566(n) + 7*n, also a(n) = A000566(n) + A008589(n). - Michel Marcus, Dec 22 2016
Previous Showing 21-30 of 40 results. Next