cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A213821 Rectangular array: (row n) = b**c, where b(h) = 3*h-1, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

2, 9, 4, 24, 16, 6, 50, 39, 23, 8, 90, 76, 54, 30, 10, 147, 130, 102, 69, 37, 12, 224, 204, 170, 128, 84, 44, 14, 324, 301, 261, 210, 154, 99, 51, 16, 450, 424, 378, 318, 250, 180, 114, 58, 18, 605, 576, 524, 455, 375, 290, 206
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Comments

Principal diagonal: A033431.
Antidiagonal sums: A176060.
Row 1, (2,5,8,11,…)**(1,2,3,4,…): A006002.
Row 2, (2,5,8,11,…)**(2,3,4,5,…): (k^3 + 5*k^2 + 2*k)/2.
Row 3, (1,2,3,4,…)**(8,11,14,17,…): (k^3 + 8*k^2 + 3*k)/2.
For a guide to related arrays, see A212500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
2….9….24…50….90
4….16…39…76…130
6….23…54…102…170
8….30…69…128…210
10…37…84…154…250
12…44…99…180…290
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=3n-1;c[n_]:=n;
    t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
    TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
    Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
    r[n_]:=Table[t[n,k],{k,1,60}] (* A213821 *)
    Table[t[n,n],{n,1,40}] (* A033431 *)
    s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
    Table[s[n],{n,1,50}] (* A176060 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(2*n - (n-2)*x - (n-1)*x^2) and g(x) = (1-x)^4.

A067389 a(n) = 3*n^3 + 2*n^2 + n.

Original entry on oeis.org

0, 6, 34, 102, 228, 430, 726, 1134, 1672, 2358, 3210, 4246, 5484, 6942, 8638, 10590, 12816, 15334, 18162, 21318, 24820, 28686, 32934, 37582, 42648, 48150, 54106, 60534, 67452, 74878, 82830, 91326, 100384, 110022, 120258, 131110, 142596
Offset: 0

Views

Author

George E. Antoniou, Jan 21 2002

Keywords

Programs

Formula

a(n) = n*A056109(n) = A045991(n+1)+A033431(n). - Henry Bottomley, Jan 25 2002
From Chai Wah Wu, Apr 25 2017: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: 2*x*(x^2 + 5*x + 3)/(x - 1)^4. (End)

Extensions

More terms from Henry Bottomley, Jan 25 2002

A099834 Maximum number of different determinants that can be produced by permuting the elements of a 3 X 3 integer matrix with nonnegative entries <= n.

Original entry on oeis.org

5, 15, 53, 109, 209, 351, 573, 811, 1193, 1509, 1971, 2501, 3183, 3769, 4511, 5025, 5641, 6165, 6600, 6964, 7354, 7696, 7960, 8110, 8404, 8606, 8704, 8846, 8962, 9125, 9210, 9284, 9362, 9420
Offset: 1

Views

Author

Hugo Pfoertner, Oct 29 2004

Keywords

Comments

For large values of n it is always possible to find a matrix that produces A088021(3)=10080 different determinants. Examples are given in the link. Currently (October 2004) the smallest known n for which a(n)=10080 is 100. The elements of the corresponding matrix are given in A098072.

Examples

			a(10)=1509: A corresponding set of matrix elements is {10,9,9,8,7,5,2,1,0}.
		

Crossrefs

Cf. A099815 largest determinant that can be produced by the optimal set of matrix elements.

A333682 Number of nonnegative lattice paths from (0,0) to (4n+3,0) such that slopes of adjacent steps differ by one, assuming zero slope before and after the paths.

Original entry on oeis.org

1, 3, 16, 119, 1070, 10751, 116287, 1326581, 15756587, 193181910, 2429921124, 31216684816, 408198225495, 5418728779290, 72871393962150, 991102308239835, 13613940451015378, 188650695857473559, 2634681336798911129, 37054660535787380825, 524449965598846642847
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2020

Keywords

Comments

The maximal height in all paths of length 4n+3 is (n+1)^2 = A000290(n+1).
The maximal area under all paths of length 4n+3 is 2*(n+1)^3 = A033431(n+1).

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x=0, 1, add(`if`(j=t, 0,
          b(x-1, y+j, j)), j=max(t-1, -y)..min(x*(x-1)/2-y, t+1)))
        end:
    a:= n-> b(4*n+3, 0$2):
    seq(a(n), n=0..23);

A184537 a(n) = floor(1/{(2+n^4)^(1/4)}), where {} = fractional part.

Original entry on oeis.org

5, 3, 16, 54, 128, 250, 432, 686, 1024, 1458, 2000, 2662, 3456, 4394, 5488, 6750, 8192, 9826, 11664, 13718, 16000, 18522, 21296, 24334, 27648, 31250, 35152, 39366, 43904, 48778, 54000, 59582, 65536, 71874, 78608, 85750, 93312, 101306, 109744, 118638, 128000, 137842, 148176, 159014, 170368, 182250, 194672, 207646, 221184, 235298, 250000, 265302, 281216, 297754, 314928, 332750, 351232, 370386, 390224, 410758, 432000, 453962, 476656
Offset: 0

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

Similar to A033431: replacing a(0) by 0 and a(1) by 2 gives A033431, see next comment.
From Bruno Berselli, Feb 04 2011: (Start)
For n >= 1, the value of (n^4+2)^(1/4) is just slightly above n, so the fractional part is (2+n^4)^(1/4)-n. For n > 1, then, 2*n^3 < 1/((2+n^4)^(1/4)-n) < 2*n^3+1.
The proof that 2*n^3*((2+n^4)^(1/4)-n) < 1 follows easily by isolating the quartic root and raising to the 4th power; similarly, 1 < (2*n^3+1)*((2+n^4)^(1/4)-n) needs a sign estimation of a 9th-order polynomial.
In conclusion, a(n)=A033431(n) for n > 1, with g.f. (34*x^2-12*x^3+x^4+x^5+5-17*x) / (x-1)^4. (End)

Crossrefs

Cf. A184536. Essentially the same as A033431.

Programs

  • Magma
    I:=[5, 3, 16, 54, 128,250]; [n le 6 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Jul 04 2012
  • Mathematica
    f[n_] := Floor[1/FractionalPart[(n^4 + 2)^(1/4)]]; Array[f, 40, 0]
    CoefficientList[Series[(34*x^2-12*x^3+x^4+x^5+5-17*x)/(x-1)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)
    LinearRecurrence[{4,-6,4,-1},{5,3,16,54,128,250},70] (* Harvey P. Dale, Apr 06 2018 *)

Formula

a(n) = floor( 1 / frac((2+n^4)^(1/4)) ).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 5.

A269792 a(n) = 5*n^4.

Original entry on oeis.org

0, 5, 80, 405, 1280, 3125, 6480, 12005, 20480, 32805, 50000, 73205, 103680, 142805, 192080, 253125, 327680, 417605, 524880, 651605, 800000, 972405, 1171280, 1399205, 1658880, 1953125, 2284880, 2657205, 3073280, 3536405, 4050000, 4617605, 5242880, 5929605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*n^m, is k*Sum_{j>=1}x^j*j^m (when abs(x)<1).
More generally, the ordinary generating function for the values of quartic polynomial p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (p + q + k + m - 4*r)*x + (11*p + 3*q - k - 3*m + 6*r)*x^2 + (11*p - 3*q - k + 3*m - 4*r)*x^3 + (p - q + k - m + r)*x^4)/(1 - x)^5.

Crossrefs

Cf. similar sequences of the form k*n^m, for k = 1...5, m = 1...10: A001477(k = 1, m = 1), A005843 (k = 2, m = 1), A008585 (k = 3, m = 1), A008586 (k = 4, m = 1), A008587 (k = 5, m = 1), A000290 (k = 1, m = 2), A001105 (k = 2, m = 2), A033428 (k = 3, m = 2), A016742 (k = 4, m = 2), A033429 (k = 5, m = 2), A000578 (k = 1, m = 3), A033431 (k = 2, m = 3), A117642 (k = 3, m = 3), A033430 (k = 4, m = 3), A244725 (k = 5, m = 3), A000583 (k = 1, m = 4), A244730 (k = 2, m = 4), A219056 (k = 3, m = 4), A141046 (k = 4, m = 4), this sequence(k = 5, m = 4), A000584 (k = 1, m = 5), A001014 (k = 1, m = 6), A106318 (k = 2, m = 6), A001015 (k = 1, m = 7), A001016 (k = 1, m = 8), A001017 (k = 1, m = 9), A008454 (k = 1, m = 10).

Programs

  • Maple
    A269792:=n->5*n^4: seq(A269792(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[5 n^4, {n, 0, 33}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 80, 405, 1280}, 34]
  • PARI
    x='x+O('x^99); concat(0, Vec(5*x*(1+11*x+11*x^2+x^3)/(1-x)^5)) \\ Altug Alkan, Mar 31 2016

Formula

G.f.: 5*x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5.
E.g.f.: 5*exp(x)^x*x*(1 + 7*x + 6*x^2 + x^3).
a(n) = 5*a(n-1) - 10*(9n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 5*A000583(n) = A008587(n)*A000578(n).
Sum_{n>=1} 1/a(n) = Pi^4/450 = (1/450)*A092425 = 0.216464646742...

A275709 a(n) = 2*n^3 + 3*n^2.

Original entry on oeis.org

0, 5, 28, 81, 176, 325, 540, 833, 1216, 1701, 2300, 3025, 3888, 4901, 6076, 7425, 8960, 10693, 12636, 14801, 17200, 19845, 22748, 25921, 29376, 33125, 37180, 41553, 46256, 51301, 56700, 62465, 68608, 75141, 82076, 89425, 97200, 105413, 114076, 123201, 132800, 142885
Offset: 0

Views

Author

Joshua Giambalvo, Aug 06 2016

Keywords

Comments

Apart from the initial zero this sequence gives the 2nd pentagonal number, the 4th hexagonal number, the 6th heptagonal number, the 8th octagonal number, the 10th nonagonal number, etc. as well as the 5th nonnegative number, the 7th triangular number, the 9th square, the 11th pentagonal number, the 13th hexagonal number, etc. This is a reliable pattern that does not seem to appear on any other pairs of polygonal numbers (see link).
a(n) is the maximal determinant of a 3 X 3 matrix with integer elements from {1, ..., n+1}, so (for example) the maximum determinant of a 3 X 3 matrix with integer elements from {1, ..., 5} = det(1, 5, 5; 5, 1, 5; 5, 5, 1) = a(4) = 176. - Matthew Scroggs, Dec 31 2022

Crossrefs

Programs

  • Magma
    [n^2*(2*n + 3): n in [0..30]]; // G. C. Greubel, Oct 19 2018
    
  • Maple
    seq(2*n^3+3*n^2, n=0..30); # Robert Israel, Aug 09 2016
  • Mathematica
    Table[2 n^3 + 3 n^2, {n, 0, 41}] (* or *)
    CoefficientList[Series[x (5 + 8 x - x^2)/(1 - x)^4, {x, 0, 41}], x] (* Michael De Vlieger, Aug 11 2016 *)
  • PARI
    concat(0, Vec(x*(5+8*x-x^2)/(1-x)^4 + O(x^50))) \\ Colin Barker, Aug 28 2016
    
  • PARI
    a(n)=n^2*(2*n+3) \\ Charles R Greathouse IV, Aug 28 2016
    
  • Python
    for n in range(0,50): print(n**2*(2*n+3), end=' ') # Stefano Spezia, Oct 19 2018

Formula

From Colin Barker, Aug 06 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
G.f.: x*(5+8*x-x^2) / (1-x)^4. (End)
a(n) = A033431(n) + A033428(n). - Omar E. Pol, Aug 09 2016
a(n) = A000290(n) * A005408(n+1). - Robert Israel, Aug 09 2016
a(n) = A320047(1, n, 0). - Kolosov Petro, Oct 04 2018
E.g.f.: x*(5 + 9*x + 2*x^2)*exp(x). - G. C. Greubel, Oct 19 2018
From Amiram Eldar, Jan 21 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/18 + 4*log(2)/9 - 16/27.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36 + Pi/9 -2*log(2)/9 - 8/27. (End)

A282093 Larger member of a pair (x,y) which solves x^2+y^2 = z^3 for positive x, y and z.

Original entry on oeis.org

2, 10, 11, 16, 26, 30, 39, 46, 52, 54, 68, 80, 88, 100, 110, 117, 120, 128, 130, 142, 145, 170, 198, 205, 208, 222, 236, 240, 250, 270, 286, 297, 310, 312, 322, 350, 366, 368, 371, 377, 406, 414, 415, 416, 432, 455, 481, 488, 505, 518, 520, 524, 544, 549, 584
Offset: 1

Views

Author

R. J. Mathar, Feb 06 2017

Keywords

Comments

Values y such that x^2+y^2 = z^3 has a solution 1<=x<=y with integer x, y and z.
The positive values of A033431 are a subsequence, induced by solutions where x=y.
There are entries which have more than one representation, e.g., 10^2 + 198^2 = 34^3 and 107^2 + 198^2 = 37^3 both with y=198. 234^2 + 415^2 = 61^3 and 320^2 + 415^2 = 65^3 both with y=415.
The ordered sequence of x can apparently be constructed by retrieving the perfect squares in A106265 and printing their square roots: 1, 2, 5, 7, 8, 9, 10, 11, 16, 17, 18 , 26, 27, 30,...

Examples

			2^2+2^2=2^3, so 2 is in. 5^2+10^2=5^3, so 10 is in. 2^2+11^2 = 5^3, so 11 is in. 16^2+16^2=8^3, so 16 is in.
		

Crossrefs

Cf. A000404 (values of z), A033431, A106265.

Programs

  • Maple
    isA282093 := proc(y)
        local x,z3 ;
        for x from 1 to y do
            z3 := x^2+y^2 ;
            if isA000578(z3) then
                return true ;
            end if;
        end do:
        return false ;
    end proc:
    for y from 1 to 800 do
        if isA282093(y) then
            printf("%d,\n",y) ;
        end if;
    end do:
  • Mathematica
    isA282093[y_] := Module[{x, z3},
    For[x = 1, x <= y, x++, z3 = x^2+y^2; If[IntegerQ[z3^(1/3)], Return[True]]]; Return[False]];
    Reap[For[y = 1, y <= 800, y++, If[isA282093[y], Print[y]; Sow[y]]]][[2, 1]] (* Jean-François Alcover, May 29 2023, after R. J. Mathar *)

A304161 a(n) = 2*n^3 - 4*n^2 + 10*n - 2 (n>=1).

Original entry on oeis.org

6, 18, 46, 102, 198, 346, 558, 846, 1222, 1698, 2286, 2998, 3846, 4842, 5998, 7326, 8838, 10546, 12462, 14598, 16966, 19578, 22446, 25582, 28998, 32706, 36718, 41046, 45702, 50698, 56046, 61758, 67846, 74322, 81198, 88486, 96198, 104346, 112942, 121998
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

For n>=2, a(n) is the first Zagreb index of the graph KK_n, defined as 2 copies of the complete graph K_n, with one vertex from one copy joined to two vertices of the other copy (see the Stevanovic et al. reference, p. 396).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of KK_n is M(KK_n; x,y) = (n-2)^2*x^{n-1}*y^{n-1}+2*(n-2)*x^{n-1}*y^n + (n-1)*x^{n-1}*y^{n+1} + x^n*y^n +2*x^n*y^{n+1}.

Crossrefs

Programs

  • Mathematica
    Table[2n^3-4n^2+10n-2 ,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{6,18,46,102},50] (* Harvey P. Dale, Oct 17 2022 *)
  • PARI
    Vec(2*x*(3 - 3*x + 5*x^2 + x^3) / (1 - x)^4 + O(x^60)) \\ Colin Barker, May 09 2018

Formula

a(n) = A033431(n-1) + A054000(n+1). - Omar E. Pol, May 09 2018
From Colin Barker, May 09 2018: (Start)
G.f.: 2*x*(3 - 3*x + 5*x^2 + x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A305290 Numbers k such that 4*k + 1 is a perfect cube, sorted by absolute values.

Original entry on oeis.org

0, -7, 31, -86, 182, -333, 549, -844, 1228, -1715, 2315, -3042, 3906, -4921, 6097, -7448, 8984, -10719, 12663, -14830, 17230, -19877, 22781, -25956, 29412, -33163, 37219, -41594, 46298, -51345, 56745, -62512, 68656, -75191, 82127, -89478, 97254, -105469, 114133, -123260, 132860
Offset: 1

Views

Author

Bruno Berselli, May 29 2018

Keywords

Crossrefs

Cf. A016755.
Cf. A000290: k such that 4*k is a square.
Cf. A002378: k such that 4*k+1 is a square.
Cf. A033431: k such that 4*k is a nonnegative cube.
Cf. A305291: k such that 4*k+3 is a cube.
Cf. A141046: k such that 4*k is a fourth power.
Cf. 4*A219086: k such that 4*k+1 is a fourth power.

Programs

  • Maple
    seq(coeff(series(x^2*(-7+10*x-7*x^2)/((1-x)*(1+x)^4), x,50),x,n),n=1..45); # Muniru A Asiru, May 31 2018
  • Mathematica
    LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -7, 31, -86, 182}, 45] (* Jean-François Alcover, Jun 04 2018 *)
  • PARI
    concat(0, Vec(-x^2*(7 - 10*x + 7*x^2) / ((1 - x)*(1 + x)^4) + O(x^40))) \\ Colin Barker, Jun 04 2018

Formula

G.f.: x^2*(-7 + 10*x - 7*x^2)/((1 - x)*(1 + x)^4).
a(n) = -3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5).
a(n) = (-1 - A016755(n-1)*(-1)^n)/4.
a(n) + a(-n) = (-1)^n*2^((1-(-1)^n)/2).
(n - 2)*(4*n^2 - 16*n + 19)*a(n) + (12*n^2 - 36*n + 31)*a(n-1) - (n - 1)*(4*n^2 - 8*n + 7)*a(n-2) = 0.
From Colin Barker, May 30 2018: (Start)
a(n) = n*(4*n^2 + 6*n + 3)/2 for n even.
a(n) = -(n + 1)*(4*n^2 + 2*n + 1)/2 for n odd.
(End)
Previous Showing 11-20 of 23 results. Next