cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A117647 a(2n) = A014445(n), a(2n+1) = A015448(n+1).

Original entry on oeis.org

0, 1, 2, 5, 8, 21, 34, 89, 144, 377, 610, 1597, 2584, 6765, 10946, 28657, 46368, 121393, 196418, 514229, 832040, 2178309, 3524578, 9227465, 14930352, 39088169, 63245986, 165580141, 267914296, 701408733, 1134903170, 2971215073, 4807526976, 12586269025, 20365011074, 53316291173
Offset: 0

Views

Author

Creighton Dement, Apr 10 2006

Keywords

Comments

Because of g.f. in Formula section, numbers k + 1 such that A088207(k)/k is an integer. - Ctibor O. Zizka, Apr 07 2025

Crossrefs

Programs

  • Magma
    I:=[0,1,2,5]; [n le 4 select I[n] else 4*Self(n-2) +Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    Table[Fibonacci[(6*n+1 -(-1)^n)/4], {n, 0, 40}] (* G. C. Greubel, Jul 12 2021 *)
  • Sage
    [fibonacci((6*n+1-(-1)^n)/4) for n in [0..40]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = A059973(n+2) - A059973(n+1).
G.f.: x*(x+1)^2/(1 -4*x^2 -x^4).
a(n) = Fibonacci((6*n + 1 - (-1)^n)/4) = Fibonacci(A007494(n)). - G. C. Greubel, Jul 12 2021

A209084 a(n) = 2*a(n-1) + 4*a(n-2) with n>1, a(0)=0, a(1)=4.

Original entry on oeis.org

0, 4, 8, 32, 96, 320, 1024, 3328, 10752, 34816, 112640, 364544, 1179648, 3817472, 12353536, 39976960, 129368064, 418643968, 1354760192, 4384096256, 14187233280, 45910851584, 148570636288, 480784678912, 1555851902976, 5034842521600, 16293092655104
Offset: 0

Views

Author

Seiichi Kirikami, Mar 06 2012

Keywords

Comments

a(n)/A063727(n) are convergents for A134972.
Abs(Sum_{i=0..n} C(n,n-i)*a(i)-(sqrt(5)-1)* A033887(n))->0. - Seiichi Kirikami, Jan 20 2016

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Cf. A086344 (this sequence with signs).

Programs

  • Magma
    I:=[0,4]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 16 2016
  • Mathematica
    RecurrenceTable[{a[n]==2*a[n-1]+4*a[n-2], a[0]==0, a[1]==4}, a, {n, 30}]
    LinearRecurrence[{2, 4}, {0, 4}, 40] (* Vincenzo Librandi, Jan 16 2016 *)
  • PARI
    concat(0, Vec(4*x/(1-2*x-4*x^2) + O(x^40))) \\ Michel Marcus, Jan 16 2016
    

Formula

a(n) = (2/sqrt(5))*((1+sqrt(5))^n-(1-sqrt(5))^n).
G.f.: 4*x/(1-2*x-4*x^2). - Bruno Berselli, Mar 08 2012
a(n) = 4*A085449(n) = 2*A103435(n). - Bruno Berselli, Mar 08 2012
Sum_{n>=1} 1/a(n) = (1/4) * A269991. - Amiram Eldar, Feb 01 2021

A048877 a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=8.

Original entry on oeis.org

1, 8, 33, 140, 593, 2512, 10641, 45076, 190945, 808856, 3426369, 14514332, 61483697, 260449120, 1103280177, 4673569828, 19797559489, 83863807784, 355252790625, 1504874970284, 6374752671761
Offset: 0

Views

Author

Keywords

Comments

Generalized Pellian with second term of 8.

Crossrefs

Programs

  • Haskell
    a048877 n = a048877_list !! n
    a048877_list = 1 : 8 : zipWith (+) a048877_list (map (* 4) $ tail a048877_list)
    -- Reinhard Zumkeller, May 01 2013
  • Maple
    with(combinat): a:=n->4*fibonacci(n-1,4)+fibonacci(n,4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    CoefficientList[Series[(1+4x)/(1-4x-x^2),{x,0,20}],x]  (* Harvey P. Dale, Mar 30 2011 *)
    LinearRecurrence[{4,1},{1,8},30] (* Harvey P. Dale, Nov 03 2013 *)

Formula

a(n) = ((6+sqrt(5))*(2+sqrt(5))^n - (6-sqrt(5))*(2-sqrt(5))^n )/(2*sqrt(5)).
G.f.: (1+4*x)/(1-4*x-x^2). - Philippe Deléham, Nov 03 2008
a(n)=4*a(n-1) + a(n-2); a(0)=1, a(1)=8.

A048879 Generalized Pellian with second term of 10.

Original entry on oeis.org

1, 10, 41, 174, 737, 3122, 13225, 56022, 237313, 1005274, 4258409, 18038910, 76414049, 323695106, 1371194473, 5808472998, 24605086465, 104228818858, 441520361897, 1870310266446, 7922761427681, 33561355977170, 142168185336361, 602234097322614
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a048879 n = a048879_list !! n
    a048879_list = 1 : 10 : zipWith (+)
                            a048879_list (map (* 4) $ tail a048879_list)
    -- Reinhard Zumkeller, Mar 03 2014
  • Maple
    with(combinat): a:=n->6*fibonacci(n-1,4)+fibonacci(n,4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4,1},{1,10},30] (* Harvey P. Dale, Jul 18 2011 *)

Formula

a(n) = ((8+sqrt(5))*(2+sqrt(5))^n - (8-sqrt(5))*(2-sqrt(5))^n)2*sqrt(5).
From Philippe Deléham, Nov 03 2008: (Start)
a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=10.
G.f.: (1+6*x)/(1-4*x-x^2). (End)
For n >= 1, a(n) equals the denominator of the continued fraction [4, 4, ..., 4, 10] (with n copies of 4). The numerator of that continued fraction is a(n+1). - ZhenShu Luan, Aug 05 2019

Extensions

More terms from Harvey P. Dale, Jul 18 2011

A099015 a(n) = Fib(n+1)*(2*Fib(n)^2 + Fib(n)*Fib(n-1) + Fib(n-1)^2).

Original entry on oeis.org

1, 2, 8, 33, 140, 592, 2509, 10626, 45016, 190685, 807764, 3421728, 14494697, 61400482, 260096680, 1101787113, 4667245276, 19770767984, 83750317589, 354772037730, 1502838469496, 6366125914117, 26967342128548
Offset: 0

Views

Author

Paul Barry, Sep 22 2004

Keywords

Comments

Form the matrix A=[1,1,1,1;3,2,1,0;3,1,0,0;1,0,0,0]=(binomial(3-j,i)). Then a(n)=(2,2)-element of A^n.

Crossrefs

Programs

  • Magma
    [Fibonacci(n+1)*(2*Fibonacci(n)^2 + Fibonacci(n)*Fibonacci(n-1) + Fibonacci(n-1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
    
  • Mathematica
    LinearRecurrence[{3,6,-3,-1},{1,2,8,33},30] (* Harvey P. Dale, Nov 28 2015 *)
    CoefficientList[Series[(1-x-4*x^2)/((1+x-x^2)*(1-4*x-x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    a(n)=my(e=fibonacci(n-1),f=fibonacci(n));(e+f)*(2*f^2+f*e+e^2) \\ Charles R Greathouse IV, Jun 05 2011
    
  • PARI
    first(n) = Vec((1 - x - 4*x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4) + O(x^n)) \\ Iain Fox, Dec 31 2017

Formula

G.f.: (1-x-4*x^2)/((1+x-x^2)*(1-4*x-x^2)).
G.f.: (1-x-4*x^2)/(1-3*x-6*x^2+3*x^3+x^4).
a(n) = (3*Fib(3*n+1) + (-1)^n*Fib(n-3))/5.
a(n) = (2+sqrt(5))^n*(3/10 + 3*sqrt(5)/50) + (2-sqrt(5))^n*(3/10 - 3*sqrt(5)/50) + (-1)^n*((1/2 - sqrt(5)/2)^n*(1/5 + 2*sqrt(5)/25) + (1/5 - 2*sqrt(5)/25)*(1/2 + sqrt(5)/2)^n).

A134489 a(n) = Fibonacci(5*n + 2).

Original entry on oeis.org

1, 13, 144, 1597, 17711, 196418, 2178309, 24157817, 267914296, 2971215073, 32951280099, 365435296162, 4052739537881, 44945570212853, 498454011879264, 5527939700884757, 61305790721611591, 679891637638612258
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Comments

The o.g.f. of {F(m*n + 2)}_{n>=0}, for m = 1, 2, ..., is
G(m,x) = (1 + F(m - 2)*x) / (1 - L(m)*x + (-1)^m*x^2), with F = A000045 and F(-1) = 1, and L = A000032. - Wolfdieter Lang, Feb 06 2023

Crossrefs

Programs

  • Magma
    [Fibonacci(5*n+2): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
  • Mathematica
    Table[Fibonacci[5n + 2], {n, 0, 30}]
    LinearRecurrence[{11,1},{1,13},20] (* Harvey P. Dale, May 05 2022 *)

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-1-2*x) / (-1 + 11*x + x^2).
a(n) = 2*A049666(n) + A049666(n+1). (End)
a(n) = A000045(A016873(n)). - Michel Marcus, Nov 05 2013

A020712 Pisot sequences E(5,8), P(5,8).

Original entry on oeis.org

5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60,.. - R. J. Mathar, Aug 10 2012

Crossrefs

Subsequence of A020701 and hence A020695, A000045. See A008776 for definitions of Pisot sequences.
Trisections: A015448, A014445, A033887.

Programs

Formula

a(n) = Fib(n+5). a(n) = a(n-1) + a(n-2).
O.g.f.: (5+3x)/(1-x-x^2). a(n)=A020701(n+1). - R. J. Mathar, May 28 2008
a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-11+5*sqrt(5))+(1+sqrt(5))^n*(11+5*sqrt(5))))/sqrt(5). - Colin Barker, Jun 05 2016

A290750 Inverse Euler transform of [3, 13, 55, 233, 987, 4181, 17711, 75025, 317811, ...], Fibonacci(3*k+1).

Original entry on oeis.org

3, 7, 24, 76, 272, 948, 3496, 12920, 48792, 185912, 716472, 2781600, 10878640, 42789292, 169181280, 671865840, 2678679360, 10716650484, 43007271768, 173072547360, 698235684336, 2823329204964, 11439823954664, 46440709197120, 188856966713360, 769241291697640, 3137871076653336, 12817512478814400
Offset: 1

Views

Author

N. J. A. Sloane, Aug 12 2017

Keywords

Crossrefs

Cf. A033887.

Programs

  • Maple
    read(transforms): with(combinat); F:=fibonacci;
    s1:=[seq(F(3*n+1),n=1..40)];
    EULERi(s1);
  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i b[[i]] - Sum[c[[d]] b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d] c[[d]], {d, 1, i}]]]; Return[a]];
    EULERi[Table[Fibonacci[3k + 1], {k, 1, 30}]] (* Jean-François Alcover, Aug 06 2018 *)

Formula

a(n) ~ (2 + sqrt(5))^n / n. - Vaclav Kotesovec, Oct 09 2019

A271388 a(n) = 4*a(n-1) + a(n-2) - n for n > 1, with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 6, 22, 89, 372, 1570, 6644, 28137, 119182, 504854, 2138586, 9059185, 38375312, 162560418, 688616968, 2917028273, 12356730042, 52343948422, 221732523710, 939274043241, 3978828696652, 16854588829826, 71397184015932, 302443324893529, 1281170483590022
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == 4 a[n - 1] + a[n - 2] - n}, a, {n, 28}]
    LinearRecurrence[{6, -8, 2, 1}, {0, 1, 2, 6}, 29]
    nxt[{n_,a_,b_}]:={n+1,b,4b+a-n-1}; NestList[nxt,{1,0,1},30][[;;,2]] (* Harvey P. Dale, Feb 07 2025 *)
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(1-4*x+2*x^2)/((1-x)^2*(1-4*x-x^2)))) \\ Altug Alkan, Apr 06 2016
    
  • PARI
    a(n) = (3*fibonacci(3*n-2) + 2*n+3) >> 3; \\ Kevin Ryde, May 16 2021

Formula

G.f.: x*(1 - 4*x + 2*x^2)/((1 - x)^2*(1 - 4*x - x^2)).
E.g.f.: (1/80)*(10*exp(x)*(2*x + 3) - 3*(5 + 3*sqrt(5))*exp((2 - sqrt(5))*x) + 3*(3*sqrt(5) - 5)*exp((2 + sqrt(5))*x)).
a(n) = 6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4).
a(n) = (1/80)*(20*n - 3*(5 + 3*sqrt(5))*(2 - sqrt(5))^n + 3*(3*sqrt(5) - 5)*(2 + sqrt(5))^n + 30).
Lim_{n->infinity} a(n + 1)/a(n) = 2 + sqrt(5) = phi^3 = A098317, where phi is the golden ratio (A001622).
a(n) = (2*n + 3 + 3*A033887(n-1))/8. - R. J. Mathar, Mar 12 2017

A323013 Form of Zorach additive triangle T(n,k) (see A035312) where each number is sum of west and northwest numbers, with the additional condition that the first element T(n,1) is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 8, 13, 20, 30, 21, 29, 42, 62, 92, 34, 55, 84, 126, 188, 280, 89, 123, 178, 262, 388, 576, 856, 144, 233, 356, 534, 796, 1184, 1760, 2616, 377, 521, 754, 1110, 1644, 2440, 3624, 5384, 8000, 610, 987, 1508, 2262, 3372, 5016, 7456, 11080, 16464, 24464
Offset: 1

Views

Author

Michel Lagneau, Jan 02 2019

Keywords

Comments

Conjecture: Let F(i) be the i-th Fibonacci number. Each number of T(n, k), k = 1, 2, 3 is the difference between two Fibonacci numbers F(i) - F(j) for some i, j, where F(i) is the smallest Fibonacci number greater than T(n, k). The case T(n, 1) is trivial. Examples: 10 = 13 - 3, 29 = 34 - 5, 20 = 21 - 1, 42 = 55 - 13, 84 = 89 - 5, ...
We observe interesting properties:
T(n,1) = A117647(n) = 1, 2, 5, 8, 21, ... where n = 1, 2, ...
T(2n,2) = A033887(n) = 3, 13, 55, ... (Fibonacci(3n+1)), and T(2n+1,2) = A048876(n) = 7, 29, 123, ... (Generalized Pell equation with second term of 7) where n = 1, 2, ...
T(3n,3) = 10, 84, 754, 6388,... If n = 2m - 1, T(6m - 3, 3) = F(9m - 2) - F(9m - 5) and if n = 2m, T(6m, 3) = F(9m + 2) - F(9m - 4).
T(3n+1,3) = 20, 178, 1508, 13530, ... If n = 2m - 1, T(6m - 2, 3) = F(9m - 1) - F(9m - 7) and if n = 2m, T(6m+1, 3) = F(9m + 4) - F(9m + 1).
T(3n+2,3) = 42, 356, 3194, 27060, ... If n = 2m - 1, T(6m - 1, 3) = F(9m + 1) - F(9m - 2) and if n = 2m, T(6m + 2, 3) = F(9m + 5) - F(9m - 1).
Other property:
T(2m, 1) + T(2m, 2) = T(2m +1, 1) with T(2m, 1)= F(3m), T(2m, 2) = F(3m + 1) and T(2m + 1, 1) = F(3m + 2).
T(2m + 1, 1) + T(2m + 1, 2) = F(3m + 4) - F(3m - 1).

Examples

			The start of the sequence as a triangular array T(n, k) read by rows:
   1;
   2,   3;
   5,   7,  10;
   8,  13,  20,   30;
  21,  29,  42,   62,   92;
  34,  55,  84,  126,  188,  280;
  ...
		

Crossrefs

Programs

  • Maple
    with(combinat,fibonacci):
    lst:={1}:lst2:=lst:
    for n from 2 to 15 do :
    lst1:={}:ii:=0:
      for j from 1 to 1000 while(ii=0) do:
         i:=fibonacci(j):
         if {i} intersect lst2 = {} and {i+lst[1]} intersect lst2 = {}
          then
          lst1:=lst1 union {i}:ii:=1:
          else
         fi:
       od:
        for k from 1 to n-1 do:
          lst1:=lst1 union {lst1[k]+lst[k]}:
        od:
        lst:=lst1:lst2:=lst2 union lst:
        print(lst1):
       od:
Previous Showing 31-40 of 40 results.