cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 72 results. Next

A062001 Table by antidiagonals of n-Stohr sequences: T(n,k) is least positive integer not the sum of at most n distinct terms in the n-th row from T(n,1) through to T(n,k-1).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 7, 4, 2, 1, 6, 10, 8, 4, 2, 1, 7, 13, 15, 8, 4, 2, 1, 8, 16, 22, 16, 8, 4, 2, 1, 9, 19, 29, 31, 16, 8, 4, 2, 1, 10, 22, 36, 46, 32, 16, 8, 4, 2, 1, 11, 25, 43, 61, 63, 32, 16, 8, 4, 2, 1, 12, 28, 50, 76, 94, 64, 32, 16, 8, 4, 2, 1, 13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1
Offset: 1

Views

Author

Henry Bottomley, May 29 2001

Keywords

Examples

			Array begins as:
  1, 2, 3, 4,  5,  6,  7,   8,   9, ... A000027;
  1, 2, 4, 7, 10, 13, 16,  19,  22, ... A033627;
  1, 2, 4, 8, 15, 22, 29,  36,  43, ... A026474;
  1, 2, 4, 8, 16, 31, 46,  61,  76, ... A051039;
  1, 2, 4, 8, 16, 32, 63,  94, 125, ... A051040;
  1, 2, 4, 8, 16, 32, 64, 127, 190, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 255, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 256, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 256, ... ;
Antidiagonal triangle begins as:
   1;
   2,  1;
   3,  2,  1;
   4,  4,  2,  1;
   5,  7,  4,  2,   1;
   6, 10,  8,  4,   2,   1;
   7, 13, 15,  8,   4,   2,  1;
   8, 16, 22, 16,   8,   4,  2,  1;
   9, 19, 29, 31,  16,   8,  4,  2,  1;
  10, 22, 36, 46,  32,  16,  8,  4,  2, 1;
  11, 25, 43, 61,  63,  32, 16,  8,  4, 2, 1;
  12, 28, 50, 76,  94,  64, 32, 16,  8, 4, 2, 1;
  13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1;
		

Crossrefs

Diagonals include A000079, A000225, A033484, A036563, A048487.
A048483 can be seen as half this table.

Programs

  • Mathematica
    T[n_, k_]:= If[kG. C. Greubel, May 03 2022 *)
  • SageMath
    def A062001(n,k):
        if (kA062001(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, May 03 2022

Formula

If k <= n+1 then A(n, k) = 2^(k-1), while if k > n+1, A(n, k) = (2^n - 1)*(k - n) + 1 (array).
T(n, k) = A(k, n-k+1) (antidiagonals).
T(2*n-1, n) = A000079(n-1), n >= 1.
T(2*n, n) = A000079(n), n >= 1.
T(2*n+1, n) = A000225(n+1), n >= 1.
T(2*n+2, n) = A033484(n), n >= 1.
T(2*n+3, n) = A036563(n+3), n >= 1.
T(2*n+4, n) = A048487(n), n >= 1.
From G. C. Greubel, May 03 2022: (Start)
T(n, k) = (2^k - 1)*(n-2*k+1) + 1 for k < n/2, otherwise 2^(n-k).
T(2*n+5, n) = A048488(n), n >= 1.
T(2*n+6, n) = A048489(n), n >= 1.
T(2*n+7, n) = A048490(n), n >= 1.
T(2*n+8, n) = A048491(n), n >= 1.
T(2*n+9, n) = A139634(n), n >= 1.
T(2*n+10, n) = A139635(n), n >= 1.
T(2*n+11, n) = A139697(n), n >= 1. (End)

A082693 Pyramidal sequence built with powers of 2.

Original entry on oeis.org

1, 2, 1, 2, 4, 2, 1, 2, 4, 8, 4, 2, 1, 2, 4, 8, 16, 8, 4, 2, 1, 2, 4, 8, 16, 32, 16, 8, 4, 2, 1, 2, 4, 8, 16, 32, 64, 32, 16, 8, 4, 2, 1, 2, 4, 8, 16, 32, 64, 128, 64, 32, 16, 8, 4, 2, 1, 2, 4, 8, 16, 32, 64, 128, 256, 128, 64, 32, 16, 8, 4, 2, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 256, 128
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Examples

			Triangle begins:
                                 1
                               2 1 2
                             4 2 1 2 4
                           8 4 2 1 2 4 8
                        16 8 4 2 1 2 4 8 16
                     32 16 8 4 2 1 2 4 8 16 32
                  64 32 16 8 4 2 1 2 4 8 16 32 64
              128 64 32 16 8 4 2 1 2 4 8 16 32 64 128
          256 128 64 32 16 8 4 2 1 2 4 8 16 32 64 128 256
      512 256 128 64 32 16 8 4 2 1 2 4 8 16 32 64 128 256 512
1024 512 256 128 64 32 16 8 4 2 1 2 4 8 16 32 64 128 256 512 1024
... - _Philippe Deléham_, Mar 20 2013
		

Crossrefs

Cf. A004738, A082693 (partial sums), A036563 (row sums).

Programs

  • Mathematica
    pow2Pyram[row_] := Module[{st = 2^Range[0, row]}, Join[st, Reverse[Most[Rest[st]]]]]; Flatten[Array[pow2Pyram, 10]] (* Harvey P. Dale, May 09 2012 *)
    Flatten[Table[Table[2^Abs[col], {col, -row, row}], {row, 0, 7}]] (* Alonso del Arte, Apr 15 2017 *)
  • PARI
    for(i=0,9,forstep(j=i,0,-1,print1(1<Charles R Greathouse IV, Mar 20 2013

A109363 a(n) = 4*2^n - 3*n - 5.

Original entry on oeis.org

-1, 0, 5, 18, 47, 108, 233, 486, 995, 2016, 4061, 8154, 16343, 32724, 65489, 131022, 262091, 524232, 1048517, 2097090, 4194239, 8388540, 16777145, 33554358, 67108787, 134217648, 268435373, 536870826, 1073741735, 2147483556, 4294967201, 8589934494, 17179869083, 34359738264
Offset: 0

Views

Author

Creighton Dement, Aug 22 2005

Keywords

Comments

This sequence appears alongside the Eulerian numbers A000295 in the batch of sequences generated by the floretion given in the program code.
Floretion Algebra Multiplication Program, FAMP Code: 4ibaseisumseq[ - .5'i - .75'j - .5i' - .75j' + .25'ii' + .25'jj' - 1.25'kk' - .25'ik' + .5'jk' - .25'ki' + .5'kj' + .75e]; sumtype: Y[8] = (int)Y[6] - (int)Y[7] + Y[8] + sum (internal program code).

Crossrefs

Programs

Formula

G.f.: (1-4*x)/((2*x-1)*(x-1)^2).
a(0)=-1, a(n) = 2*a(n-1) + 3*n - 1. - Vincenzo Librandi, Jan 29 2011
a(0)=-1, a(1)=0, a(2)=5, a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Harvey P. Dale, Jun 13 2011
a(n) - a(n-1) = A036563(n+1). - R. J. Mathar, Jun 18 2019
E.g.f.: exp(x)*(4*exp(x) - 3*x - 5). - Elmo R. Oliveira, Mar 07 2025

A226660 Smallest positive integer k with a primitive cycle of n positive integers (n>1) under iteration by the Collatz-like 3x+k function.

Original entry on oeis.org

1, 5, 7, 5, 11, 17, 13, 97, 59, 19, 55, 233, 11, 73, 25, 29, 47, 215, 41, 103, 145, 31, 13, 119, 131, 5, 47, 53, 67, 17, 337, 125, 115, 485, 133, 127, 49, 119, 191, 293, 133, 23, 79, 103, 191, 167, 91, 409, 329, 217, 109, 449, 241, 361, 353, 1303, 239, 149, 73
Offset: 2

Views

Author

Geoffrey H. Morley, Jul 05 2013

Keywords

Comments

A cycle is called primitive if its elements are not a common multiple of the elements of another cycle.
The 3x+k function T_k is defined by T_k(x) = x/2 if x is even, (3x+k)/2 if x is odd, where k is odd.
For primitive cycles, GCD(k,6)=1.
For n>1, T_k has a primitive cycle of length n which includes 1 when k = A036563(n) = 2^n-3. So a(n) <= 2^n-3.

Crossrefs

A304370 Number of function calls of the first kind required to compute ack(3,n), where ack denotes the Ackermann function.

Original entry on oeis.org

9, 58, 283, 1244, 5213, 21342, 86367, 347488, 1394017, 5584226, 22353251, 89445732, 357848421, 1431524710, 5726360935, 22905967976, 91624920425, 366501778794, 1466011309419, 5864053626220, 23456231282029, 93824958682478, 375299901838703, 1501199741572464
Offset: 0

Views

Author

Olivier Gérard, May 11 2018

Keywords

Comments

The distinction between different kinds of recursive calls is based on a naive implementation of the Ackermann function in C.
int ack(int m, int n)
{
// Final result
....if (m==0) return n + 1;
.
// Recursive calls of the first kind:
....if (n==0) return ack(m - 1, 1);
.
// Recursive calls of the second kind:
....return ack(m - 1, ack(m, n - 1));
}

Crossrefs

Formula

G.f.: (8*x^2-14*x+9)/((4*x-1)*(2*x-1)*(x-1)^2). - Alois P. Heinz, May 12 2018

A304371 Number of function calls of the second kind required to compute ack(3,n), where ack denotes the Ackermann function.

Original entry on oeis.org

5, 47, 257, 1187, 5093, 21095, 85865, 346475, 1391981, 5580143, 22345073, 89429363, 357815669, 1431459191, 5726229881, 22905705851, 91624396157, 366500730239, 1466009212289, 5864049431939, 23456222893445, 93824941905287, 375299868284297, 1501199674463627
Offset: 0

Views

Author

Olivier Gérard, May 11 2018

Keywords

Comments

The distinction between different kinds of recursive calls is based on a naive implementation of the Ackermann function in C.
int ack(int m, int n)
{
// Final result
....if (m==0) return n + 1;
.
// Recursive calls of the first kind:
....if (n==0) return ack(m - 1, 1);
.
// Recursive calls of the second kind:
....return ack(m - 1, ack(m, n - 1));
}

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8,-21,22,-8},{5,47,257,1187},30] (* Harvey P. Dale, Oct 22 2019 *)

Formula

A304370(n) + a(n) + 1 = A074877(n).
G.f.: (8*x^3-14*x^2+7*x+5)/((4*x-1)*(2*x-1)*(x-1)^2). - Alois P. Heinz, May 12 2018

A367559 Square array T(n, k) = 2^k - n, read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 2, -1, 1, 4, -2, 0, 3, 8, -3, -1, 2, 7, 16, -4, -2, 1, 6, 15, 32, -5, -3, 0, 5, 14, 31, 64, -6, -4, -1, 4, 13, 30, 63, 128, -7, -5, -2, 3, 12, 29, 62, 127, 256, -8, -6, -3, 2, 11, 28, 61, 126, 255, 512, -9, -7, -4, 1, 10, 27, 60, 125, 254, 511, 1024
Offset: 0

Views

Author

Paul Curtz, Nov 22 2023

Keywords

Examples

			This sequence as square array T(n, k):
  n\k  0    1    2    3    4    5    6    7    8    9    10.
  ---------------------------------------------------------.
  0 :  1    2    4    8   16   32   64  128  256  512  1024.
  1 :  0    1    3    7   15   31   63  127  255  511  1023.
  2 : -1    0    2    6   14   30   62  126  254  510  1022.
  3 : -2   -1    1    5   13   29   61  125  253  509  1021.
  4 : -3   -2    0    4   12   28   60  124  252  508  1020.
  5 : -4   -3   -1    3   11   27   59  123  251  507  1019.
  6 : -5   -4   -2    2   10   26   58  122  250  506  1018.
  7 : -6   -5   -3    1    9   25   57  121  249  505  1017.
  8 : -7   -6   -4    0    8   24   56  120  248  504  1016.
  9 : -8   -7   -5   -1    7   23   55  119  247  503  1015.
  10: -9   -8   -6   -2    6   22   54  118  246  502  1014.
		

Crossrefs

Programs

Formula

G.f. of row n: 1/(1-2*x) - n/(1-x).
E.g.f. of row n: exp(2*x) - n*exp(x).
T(0, k) = 2^k = A000079(k).
T(1, k) = 2^k - 1 = A000225(k).
T(2, k) = 2^k - 2 = A000918(k).
T(3, k) = 2^k - 3 = A036563(k).
T(5, k) = 2^k - 5 = A168616(k).
T(9, k) = 2^k - 9 = A185346(k).
T(10, k) = 2^k - 10 = A246168(k).
T(n, k) = 3*T(n, k-1) - 2*T(n, k-2) for k > 1.
T(n+1, k) = T(n, k) + 1.
T(n, n) = 2^n - n = A000325(n).
Sum_{k = 0..n} T(n - k, k) = A084634(n).
a(n) = 2^A002262(n) - A025581(n).
G.f.: (1 - 2*x - y + 3*x*y)/((1 - x)^2*(1 - y)*(1 - 2*y)). - Stefano Spezia, Nov 27 2023

A091270 Smallest number having in binary representation a prefix of length n that is also a suffix of its successor.

Original entry on oeis.org

0, 2, 5, 13, 29, 61, 125, 253, 509, 1021, 2045, 4093, 8189, 16381, 32765, 65533, 131069, 262141, 524285, 1048573, 2097149, 4194301, 8388605, 16777213, 33554429, 67108861, 134217725, 268435453, 536870909, 1073741821
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 27 2003

Keywords

Comments

A091269(a(n)) = n and A091269(m) < n for m
a(n) = 2^(n+1) - 3 for n>2, cf. A036563.

Crossrefs

Cf. A007088.

A093810 Smallest prime factor of 2^n-3.

Original entry on oeis.org

1, 5, 13, 29, 61, 5, 11, 509, 1021, 5, 4093, 19, 16381, 5, 13, 53, 11, 5, 1048573, 773, 4194301, 5, 16777213, 479, 37, 5, 11, 536870909, 23, 5, 9241, 29, 5113, 5, 242819, 47189, 11, 5, 13, 23, 47, 5, 5927, 2087, 227, 5, 11, 19, 59, 5, 13, 2203, 36217, 5, 181
Offset: 2

Author

Yasutoshi Kohmoto, May 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; Table[ PrimeFactors[2^n - 3][[1]], {n, 2, 60}] (* Robert G. Wilson v, May 24 2004 *)
    FactorInteger[#][[1,1]]&/@(2^Range[2,60]-3) (* Harvey P. Dale, Aug 21 2016 *)

Formula

a(n) = A020639(A036563(n)). - Amiram Eldar, Sep 12 2022

Extensions

More terms from Robert G. Wilson v, May 24 2004

A093817 Largest prime factor of 2^n-3.

Original entry on oeis.org

1, 5, 13, 29, 61, 5, 23, 509, 1021, 409, 4093, 431, 16381, 6553, 71, 2473, 23831, 97, 1048573, 2713, 4194301, 1677721, 16777213, 70051, 5197, 31033, 1877171, 536870909, 46684427, 22605091, 464773, 296204641, 3360037, 6871947673, 283007
Offset: 2

Author

Yasutoshi Kohmoto, May 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; Table[ PrimeFactors[2^n - 3][[ -1]], {n, 2, 46}] (* Robert G. Wilson v, May 24 2004 *)
    Table[FactorInteger[2^n-3][[-1,1]],{n,2,40}] (* Harvey P. Dale, Feb 01 2015 *)

Formula

a(n) = A006530(A036563(n)). - Amiram Eldar, Sep 12 2022

Extensions

More terms from Robert G. Wilson v, May 24 2004
Previous Showing 41-50 of 72 results. Next