cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A147874 a(n) = (5*n-7)*(n-1).

Original entry on oeis.org

0, 3, 16, 39, 72, 115, 168, 231, 304, 387, 480, 583, 696, 819, 952, 1095, 1248, 1411, 1584, 1767, 1960, 2163, 2376, 2599, 2832, 3075, 3328, 3591, 3864, 4147, 4440, 4743, 5056, 5379, 5712, 6055, 6408, 6771, 7144, 7527, 7920, 8323, 8736, 9159, 9592, 10035
Offset: 1

Views

Author

Keywords

Comments

Zero followed by partial sums of A017305.
Appears to be related to various other sequences: a(n) = A036666(2*n-2) for n>1; a(n) = A115006(2*n-3) for n>1; a(n) = A118015(5*n-6) for n>1; a(n) = A008738(5*n-7) for n>1.
Even dodecagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011

Crossrefs

Cf. A017305 (10n+3), A036666, A115006, A118015 (floor(n^2/5)), A008738 (floor((n^2+1)/5)), A294830.
Cf. A051624, A193872. - Omar E. Pol, Aug 19 2011

Programs

  • GAP
    List([1..50], n-> (5*n-7)*(n-1)); # G. C. Greubel, Jul 30 2019
  • Magma
    [ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // Klaus Brockhaus, Nov 17 2008
    
  • Magma
    [ 5*n^2-2*n: n in [0..50] ];
    
  • Mathematica
    s=0;lst={s};Do[s+=n++ +3;AppendTo[lst,s],{n,0,6!,10}];lst
    Table[5n^2-12n+7,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{0,3,16},50] (* or *) PolygonalNumber[12,Range[0,100,2]]/4 (* Harvey P. Dale, Aug 08 2021 *)
  • PARI
    {m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ","))} \\ Klaus Brockhaus, Nov 17 2008
    
  • Sage
    [(5*n-7)*(n-1) for n in (1..50)] # G. C. Greubel, Jul 30 2019
    

Formula

a(n) = Sum_{k=0..n-2} 10*k+3 = Sum_{k=0..n-2} A017305(k).
G.f.: x*(3 + 7*x)/(1-x)^3.
a(n) = 10*(n-2) + 3 + a(n-1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A193872(n-1)/4. - Omar E. Pol, Aug 19 2011
a(n+1) = A131242(10n+2). - Philippe Deléham, Mar 27 2013
E.g.f.: -7 + (7 - 7*x + 5*x^2)*exp(x). - G. C. Greubel, Jul 30 2019
Sum_{n>=2} 1/a(n) = A294830. - Amiram Eldar, Nov 15 2020
a(n) = A014105(n-1) + 3*A002378(n-2). - Leo Tavares, Mar 31 2025

Extensions

Edited by R. J. Mathar and Klaus Brockhaus, Nov 17 2008, Nov 20 2008

A132209 a(0) = 0 and a(n) = 2*n^2 + 2*n - 1, for n>=1.

Original entry on oeis.org

0, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 06 2007

Keywords

Comments

Previous name was: Sequence gives X values that satisfy the integer equation 2*X^3 + 3*X^2 = Y^2.
To find Y values: b(n) = (2*n^2 + 2*n - 1)*(2*n - 1).

Crossrefs

Programs

  • Magma
    [0] cat [2*n^2+2*n-1: n in [1..50]]; // Vincenzo Librandi, Sep 22 2015
    
  • Mathematica
    Join[{0}, LinearRecurrence[{3, -3, 1}, {3, 11, 23}, 40]] (* Vincenzo Librandi, Sep 22 2015 *)
  • PARI
    for(n=0,50, print1(if(n==0, 0, 2*n^2 + 2*n -1), ", ")) \\ G. C. Greubel, Jul 13 2017

Formula

a(n) = 2*n^2 + 2*n - 1 for n>=1.
G.f.: x*(1+x)*(3-x)/(1-x)^3. - R. J. Mathar, Nov 14 2007
E.g.f.: 1 + (2*x^2 + 4*x -1)*exp(x). - G. C. Greubel, Jul 13 2017
From Amiram Eldar, Mar 07 2021: (Start)
Sum_{n>=1} 1/a(n) = 1 + sqrt(3)*Pi*tan(sqrt(3)*Pi/2)/6.
Product_{n>=1} (1 + 1/a(n)) = -Pi*sec(sqrt(3)*Pi/2)/2.
Product_{n>=1} (1 - 1/a(n)) = cos(sqrt(5)*Pi/2)*sec(sqrt(3)*Pi/2)/2. (End)

Extensions

Edited by the Associate Editors of the OEIS, Nov 15 2009
More terms from Vincenzo Librandi, Sep 22 2015
Shorter name (using formula given) from Joerg Arndt, Sep 27 2015

A062317 Numbers k such that 5*k-1 is a perfect square.

Original entry on oeis.org

1, 2, 10, 13, 29, 34, 58, 65, 97, 106, 146, 157, 205, 218, 274, 289, 353, 370, 442, 461, 541, 562, 650, 673, 769, 794, 898, 925, 1037, 1066, 1186, 1217, 1345, 1378, 1514, 1549, 1693, 1730, 1882, 1921, 2081, 2122, 2290, 2333, 2509, 2554, 2738, 2785, 2977
Offset: 1

Views

Author

Santi Spadaro, Jul 12 2001

Keywords

Crossrefs

Cf. A036666.

Programs

  • Mathematica
    f[n_]:=IntegerQ[Sqrt[5*n-1]]; Select[Range[0,8! ],f[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,2,10,13,29},50] (* Harvey P. Dale, Dec 29 2018 *)
  • PARI
    je=[]; for(n=1,5000, if(issquare(5*n-1),je=concat(je,n))); je
    
  • PARI
    { n=0; for (m=1, 10^9, if (issquare(5*m - 1), write("b062317.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 04 2009

Formula

a(n) = ((2+5*(n-1)/2)^2 + 1)/5 if n is odd; a(n) = ((3+5*(n-2)/2)^2 + 1)/5 if n is even.
From R. J. Mathar, Jan 30 2010: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+x+6*x^2+x^3+x^4)/((1+x)^2*(1-x)^3). (End)
a(n) = (10*n*(n-1) + 5 - (6*n-3)*(-1)^n)/8. - Eric Simon Jacob, Jan 20 2020

Extensions

More terms from Jason Earls, Jul 14 2001

A212967 Number of (w,x,y) with all terms in {0,...,n} and w < range{w,x,y}.

Original entry on oeis.org

0, 3, 10, 26, 50, 89, 140, 212, 300, 415, 550, 718, 910, 1141, 1400, 1704, 2040, 2427, 2850, 3330, 3850, 4433, 5060, 5756, 6500, 7319, 8190, 9142, 10150, 11245, 12400, 13648, 14960, 16371, 17850, 19434, 21090, 22857, 24700, 26660, 28700
Offset: 0

Views

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • GAP
    List([1..45],n->Sum([1..n],k->(10*k*(k-1)+(2*k-1)*(-1)^k+1)/8)); # Muniru A Asiru, Nov 28 2018
    
  • Magma
    [(n+1)*(10*n*(n+2) - 3*(-1)^n+3)/24: n in [0..50]]; // Vincenzo Librandi, Nov 29 2018
  • Maple
    A212967:=n->(n+1)*(10*n*(n+2)-3*(-1)^n+3)/24: seq(A212967(n), n=0..100); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w < (Max[w, x, y] - Min[w, x, y]), s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    Map[t[#] &, Range[0, 60]]   (* A212967 *)
    Accumulate[Accumulate[Table[n + LCM[n, 2], {n, 0, 60}]]] (* Jon Maiga, Nov 28 2018 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 3, 10, 26, 50, 89}, 50] (* Vincenzo Librandi, Nov 29 2018 *)

Formula

a(n) + A212968(n) = (n + 1)^3.
a(n) = (n + 1)*(10*n*(n + 2) - 3*(-1)^n + 3)/24.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: f(x)/g(x), where f(x) = x*(3 + 4*x + 3*x^2) and g(x) = ((1 - x)^4)(1 + x)^2.
a(n) = Sum_{k=1..n} A036666(k). - Jon Maiga, Nov 28 2018
E.g.f.: (exp(x)*(3 + 63*x + 60*x^2 + 10*x^3) - 3*exp(-x)*(1 - x))/24. - Franck Maminirina Ramaharo, Nov 29 2018

A132354 Integers m such that 7*m + 1 is a square.

Original entry on oeis.org

0, 5, 9, 24, 32, 57, 69, 104, 120, 165, 185, 240, 264, 329, 357, 432, 464, 549, 585, 680, 720, 825, 869, 984, 1032, 1157, 1209, 1344, 1400, 1545, 1605, 1760, 1824, 1989, 2057, 2232, 2304, 2489, 2565, 2760, 2840, 3045, 3129, 3344, 3432, 3657, 3749, 3984, 4080
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

Numbers of the form m*(7*m + 2) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018

Crossrefs

Programs

Formula

a(2*k) = k*(7*k + 2), a(2*k + 1) = 7*k^2 + 12*k + 5.
a(n) = n^2 + n + 3*ceiling(n/2)^2. - Gary Detlefs, Feb 23 2010
G.f.: -x*(5*x^2 + 4*x + 5)/((x - 1)^3*(x + 1)^2). - Colin Barker, Oct 24 2012
Sum_{n>=1} 1/a(n) = 7/4 - cot(2*Pi/7)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

More terms from Max Alekseyev, Nov 13 2009
Better definition from Max Alekseyev, Oct 24 2012

A205633 Expansion of f(x^3, x^7) in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 02 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x^3 + x^7 + x^16 + x^24 + x^39 + x^51 + x^72 + x^88 + x^115 + x^135 + ...
G.f. = q + q^16 + q^36 + q^81 + q^121 + q^196 + q^256 + q^361 + q^441 + q^576 + ...
		

Crossrefs

Programs

  • Mathematica
    A205633[n_] := SeriesCoefficient[QPochhammer[-q^3, q^10]* QPochhammer[-q^7, q^10]*QPochhammer[q^10, q^10], {q, 0, n}]; Table[A205633[n], {n,0,50}] (* G. C. Greubel, Jun 16 2017 *)
  • PARI
    {a(n) = issquare(5*n + 1)}; /* Michael Somos, Sep 22 2012 */

Formula

Euler transform of period 20 sequence [ 0, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0, 0, -1, ...]. - Michael Somos, Sep 22 2012
Characteristic function of A036666: a(n) = 1 if and only if n is in A036666.
G.f.: Sum_{k in Z} x^(5*k^2 + 2*k).
a(3*n + 2) = a(4*n + 1) = a(4*n + 2) = 0. a(4*n + 3) = A205988(n). - Michael Somos, Sep 22 2012

A298950 Numbers k such that 5*k - 4 is a square.

Original entry on oeis.org

1, 4, 8, 17, 25, 40, 52, 73, 89, 116, 136, 169, 193, 232, 260, 305, 337, 388, 424, 481, 521, 584, 628, 697, 745, 820, 872, 953, 1009, 1096, 1156, 1249, 1313, 1412, 1480, 1585, 1657, 1768, 1844, 1961, 2041, 2164, 2248, 2377, 2465, 2600, 2692, 2833, 2929, 3076, 3176, 3329, 3433
Offset: 1

Views

Author

Bruno Berselli, Jan 30 2018

Keywords

Comments

a(n) is a member of A140612. Proof: a(n) = n^2 + (n/2-1)^2 for even n, otherwise a(n) = (n-1)^2 + ((n+1)/2)^2; also, a(n) + 1 = (n-1)^2 + (n/2+1)^2 for even n, otherwise a(n) + 1 = n^2 + ((n-3)/2)^2. Therefore, both a(n) and a(n) + 1 belong to A001481.
Primes in sequence are listed in A245042.
Squares in sequence are listed in A081068.

Crossrefs

Cf. A195162: numbers k such that 5*k + 4 is a square.
Subsequence of A001481, A020668, A036404, A140612.
Cf. A036666, A081068, A106833 (first differences), A245042.

Programs

  • GAP
    List([1..60], n -> (10*n*(n-1)+(2*n-1)*(-1)^n+9)/8);
    
  • Magma
    [(10*n*(n-1)+(2*n-1)*(-1)^n+9)/8: n in [1..60]];
    
  • Mathematica
    Table[(10 n (n - 1) + (2 n - 1) (-1)^n + 9)/8, {n, 1, 60}]
    LinearRecurrence[{1,2,-2,-1,1},{1,4,8,17,25},60] (* Harvey P. Dale, Sep 16 2022 *)
  • Maxima
    makelist((10*n*(n-1)+(2*n-1)*(-1)^n+9)/8, n, 1, 60);
    
  • PARI
    Vec((1+x^2)*(1+3*x+x^2)/((1-x)^3*(1+x)^2)+O(x^60))
    
  • PARI
    vector(60, n, nn; (10*n*(n-1)+(2*n-1)*(-1)^n+9)/8)
    
  • Python
    [(10*n*(n-1)+(2*n-1)*(-1)**n+9)/8 for n in range(1, 60)]
  • Sage
    [(10*n*(n-1)+(2*n-1)*(-1)^n+9)/8 for n in (1..60)]
    

Formula

G.f.: x*(1 + x^2)*(1 + 3*x + x^2)/((1 - x)^3*(1 + x)^2).
a(n) = a(1-n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (10*n*(n-1) + (2*n-1)*(-1)^n + 9)/8.
a(n) = A036666(n) + 1.
Previous Showing 11-17 of 17 results.