cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 120 results. Next

A080791 Number of nonleading 0's in binary expansion of n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 2, 1, 1, 0, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, 4, 3, 3, 2, 4
Offset: 0

Views

Author

Cino Hilliard, Mar 25 2003

Keywords

Comments

In this version we consider the number zero to have no nonleading 0's, thus a(0) = 0. The variant A023416 has a(0) = 1.
Number of steps required to reach 1, starting at n + 1, under the operation: if x is even divide by 2 else add 1. This is the x + 1 problem (as opposed to the 3x + 1 problem).

Examples

			a(4) = 2 since 4 in binary is 100, which has two zeros.
a(5) = 1 since 5 in binary is 101, which has only one zero.
		

Crossrefs

Programs

  • Maple
    seq(numboccur(0, Bits[Split](n)), n=0..100); # Robert Israel, Oct 26 2017
  • Mathematica
    {0}~Join~Table[Last@ DigitCount[n, 2], {n, 120}] (* Michael De Vlieger, Mar 07 2016 *)
    f[n_] := If[OddQ@ n, f[n -1] -1, f[n/2] +1]; f[0] = f[1] = 0; Array[f, 105, 0] (* Robert G. Wilson v, May 21 2017 *)
    Join[{0}, Table[Count[IntegerDigits[n, 2], 0], {n, 1, 100}]] (* Vincenzo Librandi, Oct 27 2017 *)
  • PARI
    a(n)=if(n,a(n\2)+1-n%2)
    
  • PARI
    A080791(n)=if(n,logint(n,2)+1-hammingweight(n)) \\ M. F. Hasler, Oct 26 2017
    
  • Python
    def a(n): return bin(n)[2:].count("0") if n>0 else 0 # Indranil Ghosh, Apr 10 2017
  • Scheme
    ;; with memoizing definec-macro from Antti Karttunen's IntSeq-library)
    (define (A080791 n) (- (A029837 (+ 1 n)) (A000120 n)))
    ;; Alternative version based on a simple recurrence:
    (definec (A080791 n) (if (zero? n) 0 (+ (A080791 (- n 1)) (A007814 n) (A036987 (- n 1)) -1)))
    ;; from Antti Karttunen, Dec 12 2013
    

Formula

From Antti Karttunen, Dec 12 2013: (Start)
a(n) = A029837(n+1) - A000120(n).
a(0) = 0, and for n > 0, a(n) = (a(n-1) + A007814(n) + A036987(n-1)) - 1.
For all n >= 1, a(A054429(n)) = A048881(n-1) = A000120(n) - 1.
Equally, for all n >= 1, a(n) = A000120(A054429(n)) - 1.
(End)
Recurrence: a(2n) = a(n) + 1 (for n > 0), a(2n + 1) = a(n). - Ralf Stephan from Cino Hilliard's PARI program, Dec 16 2013. Corrected by Alonso del Arte, May 21 2017 after consultation with Chai Wah Wu and Ray Chandler, "n > 0" added by M. F. Hasler, Oct 26 2017
a(n) = A023416(n) for all n > 0. - M. F. Hasler, Oct 26 2017
G.f. g(x) satisfies g(x) = (1+x)*g(x^2) + x^2/(1-x^2). - Robert Israel, Oct 26 2017

A003959 If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144, 68
Offset: 1

Views

Author

Keywords

Comments

Completely multiplicative.
Sum of divisors of n with multiplicity. If n = p^m, the number of ways to make p^k as a divisor of n is C(m,k); and sum(C(m,k)*p^k) = (p+1)^k. The rest follows because the function is multiplicative. - Franklin T. Adams-Watters, Jan 25 2010

Crossrefs

Programs

  • Haskell
    a003959 1 = 1
    a003959 n = product $ map (+ 1) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
  • Maple
    a:= n-> mul((i[1]+1)^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); a /@ Range[67] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X-p*X))[n]) /* Ralf Stephan */
    

Formula

Multiplicative with a(p^e) = (p+1)^e. - David W. Wilson, Aug 01 2001
Sum_{n>0} a(n)/n^s = Product_{p prime} 1/(1-p^(-s)-p^(1-s)) (conjectured). - Ralf Stephan, Jul 07 2013
This follows from the absolute convergence of the sum (compare with a(n) = n^2) and the Euler product for completely multiplicative functions. Convergence occurs for at least Re(s)>3. - Thomas Anton, Jul 15 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065488/2 = 1/(2*A005596) = 1.3370563627850107544802059152227440187511993141988459926... - Vaclav Kotesovec, Jul 17 2021
From Thomas Scheuerle, Jul 19 2021: (Start)
a(n) = gcd(A166642(n), A166643(n)).
a(n) = A166642(n)/A061142(n).
a(n) = A166643(n)/A165824(n).
a(n) = A166644(n)/A165825(n).
a(n) = A166645(n)/A165826(n).
a(n) = A166646(n)/A165827(n).
a(n) = A166647(n)/A165828(n).
a(n) = A166649(n)/A165830(n).
a(n) = A166650(n)/A165831(n).
a(n) = A167351(n)/A166590(n). (End)
Dirichlet g.f.: zeta(s-1) * Product_{primes p} (1 + 1/(p^s - p - 1)). - Vaclav Kotesovec, Aug 22 2021

Extensions

Definition reedited (with formula) by Daniel Forgues, Nov 17 2009

A065120 Highest power of 2 dividing A057335(n).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Alford Arnold, Nov 12 2001

Keywords

Comments

a(n) appears on row 1 of the array illustrated in A066099.
Except for initial zero, ordinal transform of A062050. After initial zero, n-th chunk consists of n, one n-1, two (n-2)'s, ..., 2^(k-1) (n-k)'s, ..., 2^(n-1) 1's. - Franklin T. Adams-Watters, Sep 11 2006
Zero together with a triangle read by rows in which row j lists the first 2^(j-1) terms of A001511 in nonincreasing order, j >= 1, see example. Also row j lists the first parts, in nonincreasing order, of the compositions of j. - Omar E. Pol, Sep 11 2013
The n-th row represents the frequency distribution of 1, 2, 3, ..., 2^(n-1) in the first 2^n - 1 terms of A003602. - Gary W. Adamson, Jun 10 2021

Examples

			A057335(7)= 30 and 30 = 2*3*5 so a(7) = 1; A057335(9)= 24 and 24 = 8*3 so a(9) = 3
From _Omar E. Pol_, Aug 30 2013: (Start)
Written as an irregular triangle with row lengths A011782:
  0;
  1;
  2,1;
  3,2,1,1;
  4,3,2,2,1,1,1,1;
  5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1;
  6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
  ...
Column 1 is A001477. Row sums give A000225. Row lengths is A011782.
(End)
		

Crossrefs

Programs

  • Mathematica
    nmax = 105;
    A062050 = Flatten[Table[Range[2^n], {n, 0, Log[2, nmax] // Ceiling}]];
    Module[{b}, b[_] = 0;
    a[n_] := If[n == 0, 0, With[{t = A062050[[n]]}, b[t] = b[t] + 1]]];
    a /@ Range[0, nmax] (* Jean-François Alcover, Jan 12 2022 *)
  • PARI
    lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, v[i] = mg(i-1)*v[(i+1)\2];); for (i=1, nn, print1(valuation(v[i], 2), ", "););} \\ Michel Marcus, Feb 09 2014
    
  • PARI
    my(L(n)=if(n,logint(n,2),-1)); a(n) = my(p=L(n)); p - L(n-1<Kevin Ryde, Aug 06 2021

Formula

From Daniel Starodubtsev, Aug 05 2021: (Start)
a(n) = A001511(A059894(n) - 2^A000523(n) + 1) for n > 0 with a(0) = 0.
a(2n+1) = a(n), a(2n) = a(n) + A036987(n-1) for n > 1 with a(0) = 0, a(1) = 1. (End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

A023359 Number of compositions (ordered partitions) of n into powers of 2.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 18, 31, 56, 98, 174, 306, 542, 956, 1690, 2983, 5272, 9310, 16448, 29050, 51318, 90644, 160118, 282826, 499590, 882468, 1558798, 2753448, 4863696, 8591212, 15175514, 26805983, 47350056, 83639030, 147739848, 260967362
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of partitions of 2n into n parts, with each partition realized into non-symmetric permutations ignoring 1's. For example a(6): the partitions of 12 into 6 are: 111117 (1), 111126 (1), 111135 (1), 111144 (1), 111225 (2), 111234 (3), 111333 (1), 112233 (3), 112224 (2), 122223 (2), 222222 (1), where the number in brackets is the number of non-symmetric permutations ignoring 1's (e.g., 111234, ignore 1's -> 234 and we can also have 243 and 324, 112233->2233 or 2323 or 2332). The sum of the bracketed numbers is a(6)=18. - Jon Perry, Jun 22 2003
a(n) is an eigensequence for the sequence array of the Fredholm-Rueppel sequence A036987. - Paul Barry, Nov 03 2010
a(n) is the number of ways to express n in Napier's location numerals (see Wikipedia). - P. Christopher Staecker, Jul 04 2024

Examples

			A(x) = A(x^2) + x*A(x^2)^2 + x^2*A(x^2)^3 + x^3*A(x^2)^4 + ... = 1 + x + 2x^2 + 3x^3 + 6x^4 + 10x^5 + 18x^6 + 31x^7 + ....
From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(6)=18 compositions of 6 into powers of 2:
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 2 1 1 ]
[ 5]  [ 1 1 2 2 ]
[ 6]  [ 1 1 4 ]
[ 7]  [ 1 2 1 1 1 ]
[ 8]  [ 1 2 1 2 ]
[ 9]  [ 1 2 2 1 ]
[10]  [ 1 4 1 ]
[11]  [ 2 1 1 1 1 ]
[12]  [ 2 1 1 2 ]
[13]  [ 2 1 2 1 ]
[14]  [ 2 2 1 1 ]
[15]  [ 2 2 2 ]
[16]  [ 2 4 ]
[17]  [ 4 1 1 ]
[18]  [ 4 2 ]
(End)
		

Crossrefs

The column sums of the table A073265.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, add(a(n-2^i), i=0..ilog2(n)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 11 2014
  • Mathematica
    CoefficientList[Series[1/(1 - Sum[x^(2^i), {i, 0, 20}]), {x, 0, 20}], x]
    a[0] = 1; a[n_] := a[n] = Sum[a[n-2^k], {k, 0, Log[2, n]}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 25 2015, after Alois P. Heinz *)
  • PARI
    {a(n) = local(A, m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=2; A = 1 /(1 / subst(A, x, x^2) - x)); polcoeff(A, n))}; /* Michael Somos, Dec 20 2002 */
    
  • PARI
    N=66; x='x+O('x^N);
    Vec( 1/(1-sum(k=0,ceil(log(N)/log(2)), x^(2^k) ) ) )
    /* Joerg Arndt, Oct 21 2012 */

Formula

G.f.: 1 / (1 - Sum_{k>=0} x^(2^k)). - Joerg Arndt, Oct 21 2012
a(n) = [n=0] + Sum_{k>=0} a(n-2^k). - Len Smiley, May 07 2001
A(x) = A(x^2)/(1 - x*A(x^2)). - Paul D. Hanna, Dec 16 2002
INVERT transform of characteristic function of powers of 2, i.e., A036987 interpreted with an offset 1 instead of 0. - Antti Karttunen, Dec 12 2003
a(n) seems to be asymptotic to A*B^n where A=0.332198..., B=1.766398... - Benoit Cloitre, Dec 17 2002. More accurately: B=1.76639811455017359722848839244009973023206928795707277527828507440838434..., A=0.58679374529351144845013208294162259198824401250194713608555348278359775... - Vaclav Kotesovec, Apr 30 2014
Satisfies A(x) = 1 + A(x) * Sum_{k>=0} x^(2^k). a(m) == 1 (mod 2) when m=2^n-1, otherwise a(m) == 0 (mod 2). - Paul D. Hanna, Aug 27 2003
a(m) == 0 (mod 4) if A000120(m+2) >= 4. In general, a(m) == 0 (mod 2^N) if A000120(m+2^(N-1)) >= 2^N. - Giedrius Alkauskas, Mar 05 2010

Extensions

Edited by Franklin T. Adams-Watters, Aug 05 2005

A043529 Number of distinct base-2 digits of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Also, if prefixed by 0, the trajectory of 0 under repeated applications of the morphism 0 -> 0,1, 1 -> 1,2, 2 -> 2,2. This is a word that is pure uniform morphic, but neither primitive morphic nor recurrent. - N. J. A. Sloane, Jul 15 2018

References

  • Dekking, Michel, Michel Mendes France, and Alf van der Poorten. "Folds." The Mathematical Intelligencer, 4.3 (1982): 130-138 & front cover, and 4:4 (1982): 173-181 (printed in two parts). See Observaion 1.8.

Crossrefs

Factor of A160466. Cf. A007456 and A081729. - Johannes W. Meijer, May 24 2009
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.

Programs

  • Maple
    A043529 := proc(n): if type(ln(n+1)/ln(2), integer) then 1 else 2 fi: end proc: seq(A043529(n), n=0..90); # Johannes W. Meijer, Sep 14 2012
  • Mathematica
    (* Needs version >= 10.2. *)
    SubstitutionSystem[{0 -> {0, 1}, 1 -> {1, 2}, 2 -> {2, 2}}, 0, 7] // Last // Rest (* Jean-François Alcover, Apr 06 2020 *)
    Table[Length[Union[IntegerDigits[n,2]]],{n,0,90}] (* Harvey P. Dale, Aug 04 2024 *)

Formula

This is 2 unless n = 2^k - 1 for some k in which case it is 1.
a(n) = 2 - A036987(n). - Antti Karttunen, Nov 19 2017

Extensions

First term added and offset changed by Johannes W. Meijer, May 15 2009

A069768 Signature-permutation of Catalan bijection "Knack".

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 6, 4, 5, 22, 21, 20, 17, 18, 19, 16, 14, 9, 10, 15, 11, 12, 13, 64, 63, 62, 58, 59, 61, 57, 54, 45, 46, 55, 48, 49, 50, 60, 56, 53, 44, 47, 51, 42, 37, 23, 24, 38, 25, 26, 27, 52, 43, 39, 28, 29, 40, 30, 31, 32, 41, 33, 34, 35, 36, 196, 195, 194, 189, 190
Offset: 0

Views

Author

Antti Karttunen, Apr 16 2002; entry revised Dec 20 2008

Keywords

Comments

This automorphism of binary trees first swaps the left and right subtree of the root and then proceeds recursively to the (new) left subtree, to do the same operation there. This is one of those Catalan bijections which extend to a unique automorphism of the infinite binary tree, which in this case is A153142. See further comments there and in A153141.
This bijection, Knack, is a ENIPS-transformation of the simple swap: ENIPS(*A069770) (i.e., row 1 of A122204). Furthermore, Knack and Knick (the inverse, A069767) have a special property, that FORK and KROF transforms (explained in A122201 and A122202) transform them to their own inverses, i.e., to each other: FORK(Knick) = KROF(Knick) = Knack and FORK(Knack) = KROF(Knack) = Knick, thus this occurs also as row 1 in A122288 and naturally, the double-fork fixes both, e.g., FORK(FORK(Knack)) = Knack.
Note: the name in Finnish is "Naks".

References

  • A. Karttunen, paper in preparation.

Crossrefs

Inverse permutation: "Knick", A069767. "n-th powers" (i.e. n-fold applications), from n=2 to 6: A073291, A073293, A073295, A073297, A073299.
In range [A014137(n-1)..A014138(n-1)] of this permutation, the number of cycles is A073431, number of fixed points: A036987 (Fixed points themselves: A084108), Max. cycle size & LCM of all cycle sizes: A011782. See also: A074080.
A127302(a(n)) = A127302(n) for all n. a(n) = A057162(A057508(n)) = A069769(A057162(n))
Row 1 of A122204 and A122288, row 21 of A122285 and A130402, row 8 of A073200.
See also bijections A073287, A082346, A082347, A082350, A130342.

A069767 Signature-permutation of Catalan bijection "Knick".

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 6, 5, 4, 17, 18, 20, 21, 22, 16, 19, 15, 12, 13, 14, 11, 10, 9, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 44, 47, 53, 56, 60, 43, 52, 40, 31, 32, 41, 34, 35, 36, 42, 51, 39, 30, 33, 38, 29, 26, 27, 37, 28, 25, 24, 23, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Apr 16 2002; entry revised Dec 20 2008

Keywords

Comments

This automorphism of binary trees first swaps the left and right subtree of the root and then proceeds recursively to the (new) right subtree, to do the same operation there. This is one of those Catalan bijections which extend to a unique automorphism of the infinite binary tree, which in this case is A153141. See further comments there.
This bijection, Knick, is a SPINE-transformation of the simple swap: SPINE(*A069770) (i.e., row 1 of A122203). Furthermore, Knick and Knack (the inverse, *A069768) have a special property, that FORK and KROF transforms (explained in A122201 and A122202) transform them to their own inverses, i.e., to each other: FORK(Knick) = KROF(Knick) = Knack and FORK(Knack) = KROF(Knack) = Knick, thus this occurs also as a row 1 in A122287 and naturally, the double-fork fixes both, e.g., FORK(FORK(Knick)) = Knick. There are also other peculiar properties.
Note: the name in Finnish is "Niks".

References

  • A. Karttunen, paper in preparation.

Crossrefs

Inverse permutation: "Knack", A069768. "n-th powers" (i.e. n-fold applications), from n=2 to 6: A073290, A073292, A073294, A073296, A073298.
In range [A014137(n-1)..A014138(n-1)] of this permutation, the number of cycles is A073431, number of fixed points: A036987 (Fixed points themselves: A084108), Max. cycle size & LCM of all cycle sizes: A011782. See also: A074080.
A127302(a(n)) = A127302(n) for all n. a(n) = A057508(A057161(n)) = A057161(A069769(n)).
Row 1 of A122203 and A122287, row 15 of A122286 and A130403, row 6 of A073200.
See also bijections A073286, A082345, A082348, A082349, A130341.

A062289 Numbers n such that n-th row in Pascal triangle contains an even number, i.e., A048967(n) > 0.

Original entry on oeis.org

2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001

Keywords

Comments

Numbers n such that binary representation contains the bit string "10". Union of A043569 and A101082. - Rick L. Shepherd, Nov 29 2004
The asymptotic density of this sequence is 1 (Burns, 2016). - Amiram Eldar, Jan 26 2021

Crossrefs

Complement of A000225, so these might be called non-Mersenne numbers.
A132782 is a subsequence.

Programs

  • Haskell
    a062289 n = a062289_list !! (n-1)
    a062289_list = 2 : g 2 where
       g n = nM n : g (n+1)
       nM k = maximum $ map (\i -> i + min i (a062289 $ k-i+1)) [2..k]
       -- Cf. link [Oliver Kullmann, Xishun Zhao], Def. 3.1, page 3.
    -- Reinhard Zumkeller, Feb 21 2012, Dec 31 2010
    
  • Mathematica
    ok[n_] := MatchQ[ IntegerDigits[n, 2], {_, 1, 0, _}]; Select[ Range[100], ok] (* Jean-François Alcover, Dec 12 2011, after Rick L. Shepherd *)
  • PARI
    isok(m) = #select(x->((x%2)==0), vector(m+1, k, binomial(m, k-1))); \\ Michel Marcus, Jan 26 2021
    
  • Python
    def A062289(n): return n+(m:=n.bit_length())-(not n>=(1<Chai Wah Wu, Jun 30 2024

Formula

a(n) = A057716(n+1) - 1.
a(n) = 2 if n=1, otherwise max{min{2*i, a(n-i+1) + i}: 1 < i <= n}.
A036987(a(n)) = 0. - Reinhard Zumkeller, Mar 06 2012
A007461(a(n)) mod 2 = 0. - Reinhard Zumkeller, Apr 02 2012
A102370(n) = A105027(a(n)). - Reinhard Zumkeller, Jul 21 2012
A261461(a(n)) = A261922(a(n)). - Reinhard Zumkeller, Sep 17 2015

Extensions

More terms from Rick L. Shepherd, Nov 29 2004

A329369 Number of permutations of {1,2,...,m} with excedance set constructed by taking m-i (0 < i < m) if b(i-1) = 1 where b(k)b(k-1)...b(1)b(0) (0 <= k < m-1) is the binary expansion of n.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 7, 1, 15, 7, 17, 3, 31, 7, 15, 1, 31, 15, 37, 7, 69, 17, 37, 3, 115, 31, 69, 7, 115, 15, 31, 1, 63, 31, 77, 15, 145, 37, 81, 7, 245, 69, 155, 17, 261, 37, 77, 3, 391, 115, 261, 31, 445, 69, 145, 7, 675, 115, 245, 15, 391, 31, 63, 1, 127, 63
Offset: 0

Views

Author

Mikhail Kurkov, Nov 12 2019

Keywords

Comments

Another version of A152884.
The excedance set of a permutation p of {1,2,...,m} is the set of indices i such that p(i) > i; it is a subset of {1,2,...,m-1}.
Great work on this subject was done by R. Ehrenborg and E. Steingrimsson, so most of the formulas given below are just their results translated into the language of the sequences which are related to the binary expansion of n.
Conjecture 1: equivalently, number of open tours by a biased rook on a specific f(n) X 1 board, which ends on a white cell, where f(n) = A070941(n) = floor(log_2(2n)) + 1 and cells are colored white or black according to the binary representation of 2n. A cell is colored white if the binary digit is 0 and a cell is colored black if the binary digit is 1. A biased rook on a white cell moves only to the left and otherwise moves only to the right. - Mikhail Kurkov, May 18 2021
Conjecture 2: this sequence is an inverse modulo 2 binomial transform of A284005. - Mikhail Kurkov, Dec 15 2021

Examples

			a(1) = 1 because the 1st excedance set is {m-1} and the permutations of {1,2,...,m} with such excedance set are 21, 132, 1243, 12354 and so on, i.e., for a given m we always have 1 permutation.
a(2) = 3 because the 2nd excedance set is {m-2} and the permutations of {1,2,...,m} with such excedance set are 213, 312, 321, 1324, 1423, 1432, 12435, 12534, 12543 and so on, i.e., for a given m we always have 3 permutations.
a(3) = 1 because the 3rd excedance set is {m-2, m-1} and the permutations of {1,2,...,m} with such excedance set are 231, 1342, 12453 and so on, i.e., for a given m we always have 1 permutation.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember;  2^padic[ordp](n, 2) end:
    a:= proc(n) option remember; `if`(n=0, 1, (h-> a(h)+
         `if`(n::odd, 0, (t-> a(h-t)+a(n-t))(g(h))))(iquo(n, 2)))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jan 30 2023
  • Mathematica
    a[n_] := a[n] = Which[n == 0, 1, OddQ[n], a[(n-1)/2], True, a[n/2] + a[n/2 - 2^IntegerExponent[n/2, 2]] + a[n - 2^IntegerExponent[n/2, 2]]];
    a /@ Range[0, 65] (* Jean-François Alcover, Feb 13 2020 *)
  • PARI
    upto(n) = my(A, v1); v1 = vector(n+1, i, 0); v1[1] = 1; for(i=1, n, v1[i+1] = v1[i\2+1] + if(i%2, 0, A = 1 << valuation(i/2, 2); v1[i/2-A+1] + v1[i-A+1])); v1 \\ Mikhail Kurkov, Jun 06 2024

Formula

a(2n+1) = a(n) for n >= 0.
a(2n) = a(n) + a(n - 2^f(n)) + a(2n - 2^f(n)) for n > 0 with a(0) = 1 where f(n) = A007814(n) (equivalent to proposition 2.1 at the page 286, see R. Ehrenborg and E. Steingrimsson link).
a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n) = a(2^m*n) + a(2^(m-1)*(2n+1)) + a(2^(m-1)*(4n+1)) for m > 0, n >= 0 (equivalent to proposition 2.5 at the page 287, see R. Ehrenborg and E. Steingrimsson link).
a(2n) = a(2*g(n)) + a(2n - 2^h(n)) + a(2*g(n) + 2^h(n)) for n > 0 with a(0) = 1 where g(n) = A053645(n), h(n) = A063250(n) (equivalent to proposition 2.1 at the page 286, see R. Ehrenborg and E. Steingrimsson link).
a(2n) = 2*a(n + g(n)) + a(2*g(n)) for n > 0, floor(n/3) < 2^(floor(log_2(n))-1) (in other words, for 2^m + k where 0 <= k < 2^(m-1), m > 0) with a(0) = 1 (just a special case of the previous formula, because for 2^m + k where 0 <= k < 2^(m-1), m > 0 we have 2^h(n) = n - g(n)).
a(2n) = a(f(n,-1)) + a(f(n,0)) + a(f(n,1)) for n > 0 with a(0) = 1 where f(n,k) = 2*(f(floor(n/2),k) + n mod 2) + k*A036987(n) for n > 1 with f(1,k) = abs(k) (equivalent to a(2n) = a(2*g(n)) + a(2n - 2^h(n)) + a(2*g(n) + 2^h(n))).
a(n) = Sum_{j=0..2^wt(n) - 1} (-1)^(wt(n) - wt(j)) Product_{k=0..wt(n) - 1} (1 + wt(floor(j/2^k)))^T(n,k) for n > 0 with a(0) = 1 where wt(n) = A000120(n), T(n,k) = T(floor(n/2), k - n mod 2) for k > 0 with T(n,0) = A001511(n) (equivalent to theorem 6.3 at page 296, see R. Ehrenborg and E. Steingrimsson link). Here T(n, k) - 1 for k > 0 is the length of the run of zeros between k-th pair of ones from the right side in the binary expansion of n. Conjecture 1: this formula is equivalent to inverse modulo 2 binomial transform of A284005.
Sum_{k=0..2^n-1} a(k) = (n+1)! for n >= 0.
a((4^n-1)/3) = A110501(n+1) for n >= 0.
a(2^2*(2^n-1)) = A091344(n+1),
a(2^3*(2^n-1)) = A091347(n+1),
a(2^4*(2^n-1)) = A091348(n+1).
More generally, a(2^m*(2^n-1)) = a(2^n*(2^m-1)) = S(n+1,m) for n >= 0, m >= 0 where S(n,m) = Sum_{k=1..n} k!*k^m*Stirling2(n,k)*(-1)^(n-k) (equivalent to proposition 6.5 at the page 297, see R. Ehrenborg and E. Steingrimsson link).
Conjecture 2: a(n) = (1 + A023416(n))*a(g(n)) + Sum_{k=0..floor(log_2(n))-1} (1-R(n,k))*a(g(n) + 2^k*(1 - R(n,k))) for n > 1 with a(0) = 1, a(1) = 1, where g(n) = A053645(n) and where R(n,k) = floor(n/2^k) mod 2 (at this moment this is the only formula here, which is not related to R. Ehrenborg's and E. Steingrimsson's work and arises from another definition given above, exactly conjectured definition with a biased rook). Here R(n,k) is the (k+1)-th bit from the right side in the binary expansion of n. - Mikhail Kurkov, Jun 23 2021
From Mikhail Kurkov, Jan 23 2023: (Start)
The formulas below are not related to R. Ehrenborg's and E. Steingrimsson's work.
Conjecture 3: a(n) = A357990(n, 1) for n >= 0.
Conjecture 4: a(2^m*(2k+1)) = Sum_{i=1..wt(k) + 2} i!*i^m*A358612(k, i)*(-1)^(wt(k) - i) for m >= 0, k >= 0 where wt(n) = A000120(n).
Conjecture 5: a(2^m*(2^n - 2^p - 1)) = Sum_{i=1..n} i!*i^m*(-1)^(n - i)*((i - p + 1)*Stirling2(n, i) - Stirling2(n - p, i - p) + Sum_{j=0..p-2} (p - j - 1)*Stirling2(n - p, i - j)/j! Sum_{k=0..j} (i - k)^p*binomial(j, k)*(-1)^k) for n > 2, m >= 0, 0 < p < n - 1. Here we consider that Stirling2(n, k) = 0 for n >= 0, k < 0. (End)
Conjecture 6: a(2^m*n + q) = Sum_{i=A001511(n+1)..A000120(n)+1} A373183(n, i)*a(2^m*(2^(i-1)-1) + q) for n >= 0, m >= 0, q >= 0. Note that this formula is recursive for n != 2^k - 1. Also, it is not related to R. Ehrenborg's and E. Steingrimsson's work. - Mikhail Kurkov, Jun 05 2024
From Mikhail Kurkov, Jul 10 2024: (Start)
a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=1..m+1} a(2^i*k)*(-1)^(m-i+1)*Sum_{j=i..m+1} j^n*Stirling1(j, i)*Stirling2(m+1, j) for m >= 0, n >= 0, k >= 0 with a(0) = 1.
Proof: start with a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n) given above and rewrite it as a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=0..m} binomial(m+1, i) a(2^i*(2^(n-1)*(2k+1) - 1)).
Then conjecture that a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=1..m+1} a(2^i*k)*f(n, m, i). From that it is obvious that f(0, m, i) = [i = (m+1)].
After that use a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=0..m} binomial(m+1, i) Sum_{j=1..i+1} a(2^j*k)*f(n-1, i, j) = Sum_{i=1..m+1} a(2^i*k) Sum_{j=i-1..m} binomial(m+1, j)*f(n-1, j, i). From that it is obvious that f(n, m, i) = Sum_{j=i-1..m} binomial(m+1, j)*f(n-1, j, i).
Finally, all we need is to show that basic conditions and recurrence for f(n, m, i) gives f(n, m, i) = (-1)^(m-i+1)*Sum_{j=i..m+1} j^n*Stirling1(j, i)*Stirling2(m+1, j) (see Max Alekseyev link).
a(2^m*(2k+1)) = a(2^(m-1)*k) + (m+1)*a(2^m*k) + Sum_{i=1..m-1} a(2^m*k + 2^i) for m > 0, k >= 0.
Proof: start with a(2^(m+1)*(2k+1)) = a(2^m*k) + (m+2)*a(2^(m+1)*k) + Sum_{i=1..m} a(2^(m+1)*k + 2^i).
Then use a(2^m*(4k+1)) = a(2^m*k) + (m+1)*a(2^(m+1)*k) + Sum_{i=1..m-1} a(2^(m+1)*k + 2^i).
From that we get a(2^(m+1)*(2k+1)) - a(2^m*k) - (m+2)*a(2^(m+1)*k) - a(2^(m+1)*k + 2^m) = a(2^m*(4k+1)) - a(2^m*k) - (m+1)*a(2^(m+1)*k).
Finally, a(2^(m+1)*(2k+1)) = a(2^(m+1)*k) + a(2^m*(2*k+1)) + a(2^m*(4k+1)) which agrees with the a(2^m*(2n+1)) = a(2^m*n) + a(2^(m-1)*(2n+1)) + a(2^(m-1)*(4n+1)) given above.
This formula can be considered as an alternative to a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n). There are algorithms for both these formulas that allow you to calculate them without recursion. However, even though it is necessary to calculate binomial coefficients in the mentioned formula, the triple-looped algorithm for it still works faster (see Peter J. Taylor link).
It looks like you can also change v2 in the mentioned algorithm to vector with elements a(2^m*(2^(i+A007814(n+1)-1)-1) + q) to get a(2^m*n + q) instead of a(n). This may have common causes with formula that uses A373183 given above. (End)
From Mikhail Kurkov, Jan 27 2025: (Start)
The formulas below are not related to R. Ehrenborg's and E. Steingrimsson's work.
Conjecture 7: A008292(n+1,k+1) = Sum_{i=0..2^n-1} [A000120(i) = k]*a(i) for n >= 0, k >= 0.
Conjecture 8: a(2^m*(2^n*(2k+1)-1)) = Sum_{i=0..m} Sum_{j=0..m-i} Sum_{q=0..i} binomial(m-i,j)*(m-j+1)^n*a(2^(q+1)*k)*L(m,i,q)*(-1)^j for m >= 0, n > 0, k >= 0 where L(n,k,m) = W(n-m,k-m,m+1) for n > 0, 0 <= k < n, 0 <= m <= k and where W(n,k,m) = (k+m)*W(n-1,k,m) + (n-k)*W(n-1,k-1,m) + [m > 1]*W(n,k,m-1) for 0 <= k < n, m > 0 with W(0,0,m) = 1, W(n,k,m) = 0 for n < 0 or k < 0.
In particular, W(n, k, 1) = A173018(n, k), W(n, k, 2) = A062253(n, k), W(n, k, 3) = A062254(n, k) and W(n, k, 4) = A062255(n, k).
Conjecture 9: a(n) = b(n,wt(n)) for n >= 0 where b(2n+1,k) = b(n,k) + (wt(n)-k+2)*b(n,k-1), b(2n,k) = (wt(n)-k+1)*b(2n+1,k) for n > 0, k > 0 with b(n,0) = A341392(n) for n >= 0, b(0,k) = 0 for k > 0 and where wt(n) = A000120(n) (see A379817).
More generally, a(2^m*(2k+1)) = ((m+1)!)^2*b(k,wt(k)-m) - Sum_{j=1..m} Stirling1(m+2,j+1)*a(2^(j-1)*(2k+1)) for m >= 0, k >= 0. Here we also consider that b(n,k) = 0 for k < 0. (End)
Conjecture 10: if we change b(n,0) = A341392(n) given above to b(n,0) = A341392(n)*x^n, then nonzero terms of the resulting polynomials for b(n,wt(n)) form c(n,k) such that a(n) = Sum_{k=0..A080791(n)} c(n,k) for n >= 0 where c(n,k) = (Product_{i=0..k-1} (1 + 1/A000120(floor(n/2^(A000523(n)-i))))) * Sum_{j=max{0,k-A080791(n)+A080791(A053645(n))}..A080791(A053645(n))} c(A053645(n),j) for n > 0, k >= 0 with c(0,0) = 1, c(0,k) = 0 for k > 0. - Mikhail Kurkov, Jun 19 2025

A007404 Decimal expansion of Sum_{n>=0} 1/2^(2^n).

Original entry on oeis.org

8, 1, 6, 4, 2, 1, 5, 0, 9, 0, 2, 1, 8, 9, 3, 1, 4, 3, 7, 0, 8, 0, 7, 9, 7, 3, 7, 5, 3, 0, 5, 2, 5, 2, 2, 1, 7, 0, 3, 3, 1, 1, 3, 7, 5, 9, 2, 0, 5, 5, 2, 8, 0, 4, 3, 4, 1, 2, 1, 0, 9, 0, 3, 8, 4, 3, 0, 5, 5, 6, 1, 4, 1, 9, 4, 5, 5, 5, 3, 0, 0, 0, 6, 0, 4, 8, 5, 3, 1, 3, 2, 4, 8, 3, 9, 7, 2, 6, 5, 6, 1, 7, 5, 5, 8
Offset: 0

Views

Author

Keywords

Comments

Kempner shows that numbers of a general form (which includes this constant) are transcendental. - Charles R Greathouse IV, Nov 07 2017

Examples

			0.81642150902189314370....
		

References

  • M. J. Knight, An "oceans of zeros" proof that a certain non-Liouville number is transcendental, The American Mathematical Monthly, Vol. 98, No. 10 (1991), pp. 947-949.

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/2^(2^n), {n, 0, Infinity}], 110]] [[1]]
  • PARI
    default(realprecision, 20080); x=suminf(n=0, 1/2^(2^n)); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b007404.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009
    
  • PARI
    suminf(k = 0, 1/(2^(2^k))) \\ Michel Marcus, Mar 26 2017
    
  • PARI
    suminf(k=0,1.>>2^k) \\ Charles R Greathouse IV, Nov 07 2017

Formula

Equals -Sum_{k>=1} mu(2*k)/(2^k - 1) = Sum_{k>=1, k odd} mu(k)/(2^k - 1). - Amiram Eldar, Jun 22 2020

Extensions

Edited by Robert G. Wilson v, Dec 11 2002
Deleted old PARI program Harry J. Smith, May 20 2009
Previous Showing 21-30 of 120 results. Next