cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 114 results. Next

A280540 G.f.: Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(i*j).

Original entry on oeis.org

1, 1, 5, 11, 33, 67, 180, 366, 871, 1782, 3927, 7885, 16637, 32763, 66469, 128938, 253871, 484034, 930959, 1747304, 3292730, 6092664, 11282364, 20596790, 37568653, 67736175, 121886533, 217261372, 386216073, 681119439, 1197524035, 2091091902, 3639519280
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(i*j))^(i*j), {i, 1, nmax}, {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[k*DivisorSigma[0, k], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*d(k)), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Aug 26 2018
log(a(n)) ~ (3/2)^(2/3) * Zeta(3)^(1/3) * log(n)^(1/3) * n^(2/3). - Vaclav Kotesovec, Aug 28 2018

A280541 G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))^(i*j).

Original entry on oeis.org

1, 1, 4, 10, 24, 52, 125, 253, 549, 1126, 2290, 4525, 8987, 17259, 33174, 62669, 117425, 217295, 399904, 726984, 1314257, 2354807, 4191671, 7405590, 13009916, 22696115, 39384232, 67937488, 116584833, 199001304, 338076500, 571507377, 961855945, 1611567819
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(i*j))^(i*j), {i, 1, nmax}, {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[k*DivisorSigma[0, k], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*d(k)), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Aug 26 2018
Conjecture: log(a(n)) ~ 3 * Zeta(3)^(1/3) * log(n)^(1/3) * n^(2/3) / 2^(4/3). - Vaclav Kotesovec, Aug 29 2018

A328259 a(n) = n * sigma_2(n).

Original entry on oeis.org

1, 10, 30, 84, 130, 300, 350, 680, 819, 1300, 1342, 2520, 2210, 3500, 3900, 5456, 4930, 8190, 6878, 10920, 10500, 13420, 12190, 20400, 16275, 22100, 22140, 29400, 24418, 39000, 29822, 43680, 40260, 49300, 45500, 68796, 50690, 68780, 66300, 88400, 68962, 105000, 79550, 112728, 106470
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 09 2019

Keywords

Comments

Moebius transform of A027847.

Crossrefs

Programs

  • Mathematica
    Table[n DivisorSigma[2, n], {n, 1, 45}]
    nmax = 45; CoefficientList[Series[Sum[k^3 x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = n*sigma(n, 2); \\ Michel Marcus, Dec 02 2020

Formula

G.f.: Sum_{k>=1} k^3 * x^k / (1 - x^k)^2.
G.f.: Sum_{k>=1} k * x^k * (1 + 4 * x^k + x^(2*k)) / (1 - x^k)^4.
Dirichlet g.f.: zeta(s - 1) * zeta(s - 3).
Sum_{k=1..n} a(k) ~ zeta(3) * n^4 / 4. - Vaclav Kotesovec, Oct 09 2019
Multiplicative with a(p^e) = (p^(3*e+2) - p^e)/(p^2 - 1). - Amiram Eldar, Dec 02 2020
G.f.: Sum_{n >= 1} q^(n^2)*( n^4 - (2*n^4 - 4*n^3 - 3*n^2 - n)*q^n - (8*n^3 - 4*n)*q^(2*n) + (2*n^4 + 4*n^3 - 3*n^2 + n)*q^(3*n) - n^4*q^(4*n) )/(1 - q^n)^4. Apply the operator x*d/dx twice, followed by the operator q*d/dq once, to equation 5 in Arndt and then set x = 1. - Peter Bala, Jan 21 2021
a(n) = Sum_{k = 1..n} sigma_3( gcd(k, n) ) = Sum_{d divides n} sigma_3(d) * phi(n/d). - Peter Bala, Jan 19 2024
a(n) = Sum_{1 <= i, j, k <= n} sigma_1( gcd(i, j, k, n) ) = Sum_{d divides n} sigma_1(d) * J_3(n/d), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 22 2024

A034714 Dirichlet convolution of squares with themselves.

Original entry on oeis.org

1, 8, 18, 48, 50, 144, 98, 256, 243, 400, 242, 864, 338, 784, 900, 1280, 578, 1944, 722, 2400, 1764, 1936, 1058, 4608, 1875, 2704, 2916, 4704, 1682, 7200, 1922, 6144, 4356, 4624, 4900, 11664, 2738, 5776, 6084, 12800, 3362, 14112, 3698, 11616, 12150, 8464
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000005, A000290, A001620, A038040, A134576, A319085 (partial sums).

Programs

Formula

Dirichlet g.f.: zeta^2(s-2).
Equals n^2*tau(n), where tau(n) = A000005(n) = number of divisors of n. - Jon Perry, Aug 28 2005
Multiplicative with a(p^e) = (e+1)p^(2e). - Mitch Harris, Jun 27 2005
Row sums of triangle A134576. - Gary W. Adamson, Nov 02 2007
G.f.: Sum_{k>=1} k^2*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
a(n) = n * A038040(n). - Torlach Rush, Feb 01 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (-p^2 * log(1 - 1/p^2)) = 1.27728092754165872535305748273941301416624226497497308879403022758421224... - Vaclav Kotesovec, Sep 19 2020
G.f.: Sum_{n >= 1} q^(n^2)*( n^4*q^(3*n) - n^2*(n^2 + 4*n - 2)*q^(2*n) - n^2*(n^2 - 4*n - 2)*q^n + n^4 )/(1 - q^n)^3 - apply the operator q*d/dq twice to equation 5 in Arndt and set x = 1. - Peter Bala, Jan 21 2021
Sum_{k=1..n} a(k) ~ (n^3/3) * (log(n) + 2*gamma - 1/3), where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 02 2023
a(n) = Sum_{1 <= i, j <= n} sigma_2( gcd(i, j, n) ) = Sum_{d divides n} sigma_2(d) * J_2(n/d), where sigma_2(n) = A001157(n) and the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 22 2024

A034761 Dirichlet convolution of sigma(n) with itself.

Original entry on oeis.org

1, 6, 8, 23, 12, 48, 16, 72, 42, 72, 24, 184, 28, 96, 96, 201, 36, 252, 40, 276, 128, 144, 48, 576, 98, 168, 184, 368, 60, 576, 64, 522, 192, 216, 192, 966, 76, 240, 224, 864, 84, 768, 88, 552, 504, 288, 96, 1608, 178, 588, 288, 644, 108, 1104, 288, 1152, 320, 360
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((e + 1)*p^(e + 3) - (e + 3)*(p^(e + 2) - p + 1) + 2)/(p - 1)^3; f[2, e_] := (e - 1)*2^(e + 2) + e + 5; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 16 2022 *)

Formula

Dirichlet g.f.: zeta^2(s)*zeta^2(s-1).
Multiplicative with a(2^e) = (e-1) 2^(e+2) + e + 5, a(p^e) = ((1+e)p^(e+3) - (3+e)(p^(e+2)-p+1) + 2)/(p-1)^3, p > 2. - Mitch Harris, Jun 27 2005 [corrected by Amiram Eldar, Oct 16 2022 and Sep 12 2023]
Equals A134577 * A000005. - Gary W. Adamson, Nov 02 2007
Also the Dirichlet convolution A000005 by A038040. - R. J. Mathar, Apr 01 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 * (2*Pi^2 * log(n) + (4*gamma - 1)*Pi^2 + 24*zeta'(2)) / 144, where gamma is the Euler-Mascheroni constant A001620 and Zeta'(2) = A073002. Equivalently, Sum_{k=1..n} a(k) ~ Pi^4 * n^2 * (2*log(n) - 1 + 8*gamma - 48*log(A) + 4*log(2*Pi)) / 144, where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 28 2019

A324121 a(n) = gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n (A000005) and sigma(n) = sum of divisors of n (A000203).

Original entry on oeis.org

1, 1, 2, 1, 2, 12, 2, 1, 1, 2, 2, 4, 2, 8, 12, 1, 2, 3, 2, 6, 4, 4, 2, 12, 1, 2, 4, 56, 2, 24, 2, 3, 12, 2, 4, 1, 2, 4, 4, 10, 2, 48, 2, 12, 6, 8, 2, 4, 3, 3, 12, 2, 2, 24, 4, 8, 4, 2, 2, 24, 2, 8, 2, 1, 4, 48, 2, 6, 12, 16, 2, 3, 2, 2, 2, 4, 4, 24, 2, 2, 1, 2, 2, 112, 4, 4, 12, 4, 2, 18, 28, 24, 4, 8, 20, 36, 2, 3, 6, 1, 2, 24, 2, 2, 24
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Comments

Records 1, 2, 12, 56, 112, 120, 336, 720, 992, 2016, 4368, 8640, 14880, 16256, 26208, 59520, 78624, 120960, 131040, 191520, 227584, 297600, ... occur at positions: 1, 3, 6, 28, 84, 120, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 27846, 30240, 32760, 55860, 105664, 117800, ... . Note that A001599 is not a subsequence of the latter, as at least 18620 (present in A001599) is missing.

Crossrefs

Programs

  • Mathematica
    Table[GCD[n DivisorSigma[0,n],DivisorSigma[1,n]],{n,120}] (* Harvey P. Dale, Feb 17 2023 *)
  • PARI
    A324121(n) = gcd(sigma(n),n*numdiv(n));

Formula

a(n) = gcd(A000203(n), A038040(n)).
a(n) = A324058(A156552(n)).

A327166 Number of divisors d of n for which A000005(d)*d is equal to n, where A000005(x) gives the number of divisors of x.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2019

Keywords

Comments

a(n) tells how many times in total n occurs in A038040.

Examples

			108 has the following twelve divisors: [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108]. Of these, only d=18 and d=27 are such that d*A000005(d) = 108, as 18*6 = 27*4 = 108. Thus a(108) = 2.
		

Crossrefs

Cf. also A327153, A327169.

Programs

  • Mathematica
    Table[Sum[If[d*DivisorSigma[0, d] == n, 1, 0], {d, Divisors[n]}], {n, 1, 120}] (* Vaclav Kotesovec, Jul 23 2022 *)
  • PARI
    A327166(n) = sumdiv(n,d,(d*numdiv(d))==n);

Formula

a(n) = Sum_{d|n} [A000005(d)*d == n], where [ ] is the Iverson bracket.

A053650 Cototient function of n^2.

Original entry on oeis.org

0, 2, 3, 8, 5, 24, 7, 32, 27, 60, 11, 96, 13, 112, 105, 128, 17, 216, 19, 240, 189, 264, 23, 384, 125, 364, 243, 448, 29, 660, 31, 512, 429, 612, 385, 864, 37, 760, 585, 960, 41, 1260, 43, 1056, 945, 1104, 47, 1536, 343, 1500, 969, 1456, 53, 1944, 825, 1792, 1197
Offset: 1

Views

Author

Labos Elemer, Feb 18 2000

Keywords

Comments

Seems to be invertible like n*Phi(n). Compare with A002618, A038040.

Crossrefs

Programs

Formula

a(n) = n*(n - phi(n)) = n^2 - n*phi(n) = Cototient(n^2) = A051953(A000290(n)).
a(n) = n^2 - A002618(n).
For p prime, Cototient(p)=1 and a(p)=p.
a(n) = n*cototient(n) = n*A051953(n). - Omar E. Pol, Nov 22 2012
Dirichlet g.f.: zeta(s-2)*(1 - 1/zeta(s-1)). - Ilya Gutkovskiy, Jul 26 2016
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Dec 15 2023

A191161 Hypersigma(n), definition 2: sum of the divisors of n plus the recursive sum of the divisors of the proper divisors.

Original entry on oeis.org

1, 4, 5, 12, 7, 22, 9, 32, 19, 30, 13, 72, 15, 38, 37, 80, 19, 90, 21, 96, 47, 54, 25, 208, 39, 62, 65, 120, 31, 178, 33, 192, 67, 78, 65, 316, 39, 86, 77, 272, 43, 222, 45, 168, 147, 102, 49, 560, 67, 174, 97, 192, 55
Offset: 1

Views

Author

Alonso del Arte, May 26 2011

Keywords

Comments

In wanting to ensure the definition was not arbitrary, I initially thought that 1s had to stop the recursion. But as T. D. Noe showed me, this doesn't have to be the case: the 1s can be included in the recursion.

Crossrefs

Cf. A000203, A191150, A202687, A255242, A378211 (Dirichlet inverse).
Sequences that appear in the convolution formulas: A000010, A000203, A007429, A038040, A060640, A067824, A074206, A174725, A253249, A323910, A323912, A330575.

Programs

  • Mathematica
    hsTD[n_] := hsTD[n] = Module[{d = Divisors[n]}, Total[d] + Total[hsTD /@ Most[d]]]; Table[hsTD[n], {n, 100}] (* From T. D. Noe *)
  • PARI
    a(n)=sumdiv(n,d,if(dCharles R Greathouse IV, Dec 20 2011

Formula

a(n) = sigma(n) + sum_{d | n, d < n} a(d). - Charles R Greathouse IV, Dec 20 2011
From Antti Karttunen, Nov 22 2024: (Start)
Following formulas were conjectured by Sequence Machine:
For n > 1, a(n) = A191150(n) + A074206(n).
a(n) = A330575(n) + A255242(n) = 2*A255242(n) + n = 2*A330575(n) - n.
a(n) = Sum_{d|n} A330575(d).
a(n) = Sum_{d|n} d*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A074206(n/d).
a(n) = Sum_{d|n} A007429(d)*A174725(n/d).
a(n) = Sum_{d|n} A000010(d)*A253249(n/d).
a(n) = Sum_{d|n} A038040(d)*A323912(n/d).
a(n) = Sum_{d|n} A060640(d)*A323910(n/d).
(End)

A245214 Numbers k such that A245212(k) < 0.

Original entry on oeis.org

144, 192, 216, 240, 288, 336, 360, 384, 432, 480, 504, 540, 576, 600, 648, 672, 720, 768, 792, 840, 864, 900, 936, 960, 1008, 1056, 1080, 1152, 1200, 1248, 1260, 1296, 1320, 1344, 1440, 1512, 1536, 1560, 1584, 1620, 1632, 1680, 1728, 1800, 1824, 1848, 1872, 1920, 1944, 1980, 2016, 2040, 2100, 2112, 2160, 2240
Offset: 1

Views

Author

Jaroslav Krizek, Jul 23 2014

Keywords

Comments

If d are divisors of k then values of sequence A245212(k) are by bending moments in point 0 of static forces of sizes tau(d) operating in places d on the cantilever as the nonnegative number axis of length k with bracket in point 0 by the schema: A245212(k) = (k * tau(k)) - Sum_{(d
Numbers k such that A038040(k) = k * tau(k) < A245211(k) = Sum_{(d
From Amiram Eldar, Jul 19 2024: (Start)
Numbers whose divisors have a mean abundancy index that is larger than 2.
The numbers of terms that do not exceed 10^k, for k = 3, 4, ..., are 24, 243, 2571, 25583, 254794, 2551559, 25514104, 255112225, ... . Apparently, the asymptotic density of this sequence exists and equals 0.02551... .
The least odd term in this sequence is a(276918705) = 10854718875. (End)

Examples

			Number 144 is in sequence because 144 * tau(144) = 2160  < Sum_{(d<144) | 144} (d * tau(d)) = 2226.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | (2*(n*(#[d: d in Divisors(n)]))-(&+[d*#([e: e in Divisors(d)]): d in Divisors(n)])) lt 0]
    
  • Mathematica
    f[p_, e_] := ((e+1)*p^2 - (e+2)*p + p^(-e))/((e+1)*(p-1)^2); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2500], s[#] > 2 &]  (* Amiram Eldar, Jul 19 2024 *)
  • PARI
    isok(n) = (n*numdiv(n) - sumdiv(n, d, (dMichel Marcus, Aug 06 2014
    
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, p=f[i,1]; e=f[i,2]; (-2*p - e*p + p^2 + e*p^2 + p^(-e))/((e + 1)*(p - 1)^2)) > 2;} \\ Amiram Eldar, Jul 19 2024
Previous Showing 21-30 of 114 results. Next