cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A358019 Numbers m such that the factorizations of m..m+10 have the same number of primes (including multiplicities).

Original entry on oeis.org

202536181, 913535284, 1124342785, 1443929905, 1587749041, 1688485665, 1733574769, 2090053141, 2308638625, 2403102228, 2751673525, 2841766801, 2898584161, 2936217602, 3195380868, 3195380869, 3324630612, 3423884341, 3520752468
Offset: 1

Views

Author

Keywords

Comments

a(111) = 21117216104 is the first term where the number of primes is 5. - Zak Seidov and Robert Israel, Jun 27 2024

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), this sequence (k=10).

Programs

  • PARI
    list(lim)=my(v=List(),ct,cur); forfactored(n=202536181,lim\1+10, my(t=bigomega(n)); if(t==cur, if(ct++>9, listput(v,n[1]-10)), cur=t; ct=0)); Vec(v)

A076191 First differences of A001222.

Original entry on oeis.org

1, 0, 1, -1, 1, -1, 2, -1, 0, -1, 2, -2, 1, 0, 2, -3, 2, -2, 2, -1, 0, -1, 3, -2, 0, 1, 0, -2, 2, -2, 4, -3, 0, 0, 2, -3, 1, 0, 2, -3, 2, -2, 2, 0, -1, -1, 4, -3, 1, -1, 1, -2, 3, -2, 2, -2, 0, -1, 3, -3, 1, 1, 3, -4, 1, -2, 2, -1, 1, -2, 4, -4, 1, 1, 0, -1, 1, -2, 4, -1, -2, -1, 3, -2, 0, 0, 2, -3, 3, -2, 1, -1, 0, 0, 4, -5, 2, 0, 1, -3
Offset: 1

Views

Author

Joseph L. Pe, Nov 03 2002

Keywords

Comments

a(A045920(n)) = 0. - Reinhard Zumkeller, Mar 19 2012

Crossrefs

Programs

  • Haskell
    a076191 n = a076191_list !! (n-1)
    a076191_list = zipWith (-) (tail a001222_list) a001222_list
    -- Reinhard Zumkeller, Mar 20 2012
    
  • Mathematica
    Omega[n_] := Apply[Plus, Transpose[FactorInteger[n]][[2]]]; Flatten[Append[{1}, Table[Omega[n + 1] - Omega[n], {n, 2, 100}]]]
  • PARI
    a(n) = bigomega(n + 1) - bigomega(n); \\ Indranil Ghosh, Mar 15 2017

Formula

a(n) = Omega(n+1)-Omega(n), where Omega(n) (A001222) denotes the number of prime factors of n, counting multiplicity.
G.f.: ((1 - x)/x)*Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)). - Ilya Gutkovskiy, Mar 15 2017

Extensions

Name changed by Arkadiusz Wesolowski, Jul 27 2012

A045984 a(n) = smallest number m such that factorizations of n consecutive integers starting at m have same number of primes (counted with multiplicity).

Original entry on oeis.org

1, 2, 33, 602, 602, 2522, 211673, 3405122, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465
Offset: 1

Views

Author

Keywords

Comments

a(16) > 10^13. a(16) must have at least 5 prime factors (counted with multiplicity) because one of the 16 consecutive numbers is divisible by 2^4. - Donovan Johnson, Apr 01 2013

Examples

			a(4) = 602 as 602 = 2 * 7 * 43, 603 = 3 * 3 * 67, 604 = 2 * 2 * 151, 605 = 5 * 11 * 11 so four consecutive positive integers have the same number of prime factors starting at 602, the first such number. - _David A. Corneth_, Feb 24 2024
		

Crossrefs

Extensions

More terms from Vladeta Jovovic, Aug 06 2002
More terms from Martin Fuller, Nov 21 2006

A113752 Smallest number m such that m, m+1 and m+2 have exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

33, 170, 1274, 15470, 33614, 3145310, 40909374, 668363967, 9864741248, 179199427328, 967461818750, 57938945781248, 597779386906624
Offset: 2

Views

Author

Martin Fuller, Jan 17 2006

Keywords

Comments

n = A001222(a(n)) = A001222(a(n)+1) = A001222(a(n)+2). Subsequence of A045920.
a(14) <= 1247579465781248. - Donovan Johnson, Jun 12 2013
a(15) > 2 * 10^15. - Toshitaka Suzuki, Aug 31 2025

Examples

			a(6) = 33614 = 2*7*7*7*7*7, a(6)+1 = 3*3*3*3*5*83, a(6)+2 = 2*2*2*2*11*191
		

Crossrefs

Programs

  • Mathematica
    t = {}; n = 2; m = 1; While[Length[t] < 5, m++; If[n == PrimeOmega[m] == PrimeOmega[m + 1] == PrimeOmega[m + 2], AppendTo[t, m]; n++]]; t (* T. D. Noe, Aug 19 2013 *)

Extensions

a(9)-a(11) from Donovan Johnson, Apr 08 2008
a(12) from Donovan Johnson, Aug 08 2011
a(13) from Jud McCranie, Aug 19 2013
a(14) from Toshitaka Suzuki, Aug 31 2025

A077657 Least number with exactly n consecutive successors, all having the same number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 33, 603, 602, 2522, 211673, 3405123, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 13 2002

Keywords

Comments

A001222(a(n))=A001222(a(n)+k) for k<=n;
A077655(a(n))=n and A077655(k)

Examples

			a(0)=A077656(1)=1; a(1)=A045920(1)=2; a(2)=A045939(1)=33; a(3)=A045940(2)=603; a(4)=A045941(1)=602; a(5)=A045942(1)=2522.
		

Crossrefs

Cf. A045984.

Formula

a(n)=A045984(n+1)+A077655(A045984(n+1))-n - Martin Fuller, Nov 21 2006

Extensions

More terms from Martin Fuller, Nov 21 2006

A280382 Numbers k such that k-1 has the same number of prime factors counted with multiplicity as k+1.

Original entry on oeis.org

4, 5, 6, 12, 18, 19, 29, 30, 34, 42, 43, 50, 51, 55, 56, 60, 67, 69, 72, 77, 86, 89, 92, 94, 102, 108, 115, 120, 122, 138, 142, 144, 150, 151, 160, 171, 173, 180, 184, 186, 187, 189, 192, 197, 198, 202, 204, 214, 216, 218, 220, 228, 233, 236, 237, 240, 243, 245, 248, 249, 266, 267, 270, 271, 274, 282
Offset: 1

Author

Rick L. Shepherd, Jan 01 2017

Keywords

Examples

			Unlike for A088070, 5 is a term here because 4 = 2^2 and 6 = 2*3 each have two prime factors when counted with multiplicity. Similarly, 3 is not a term of this sequence (but is in A088070) because 2 and 4 have different numbers of prime factors as counted by A001222.
		

Crossrefs

Cf. A001222, A088070 (similar but prime factors counted without multiplicity), A280383 (prime factor count is same both ways), A280469 (subsequence of current with k-1 and k+1 squarefree also), A045920 (similar but for k and k+1).
Cf. A115167 (subsequence of odd terms).

Programs

  • Mathematica
    Select[Range[2, 300], Equal @@ PrimeOmega[# + {-1, 1}] &] (* Amiram Eldar, May 20 2021 *)
  • PARI
    IsInA280382(n) = n > 1 && bigomega(n-1) == bigomega(n+1)
    
  • Python
    from sympy import primeomega
    def aupto(limit):
      prv, cur, nxt, alst = 1, 1, 2, []
      for n in range(3, limit+1):
        if prv == nxt: alst.append(n)
        prv, cur, nxt = cur, nxt, primeomega(n+2)
      return alst
    print(aupto(282)) # Michael S. Branicky, May 20 2021

A322838 Number of positive integers less than n with more prime factors than n, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 0, 1, 1, 5, 0, 6, 2, 2, 0, 9, 1, 10, 1, 5, 5, 13, 0, 6, 6, 2, 2, 18, 2, 19, 0, 10, 10, 10, 1, 24, 11, 11, 1, 27, 5, 28, 5, 5, 15, 31, 0, 16, 6, 17, 6, 36, 2, 19, 2, 20, 20, 41, 2, 42, 21, 9, 0, 23, 10, 47, 10, 25, 10, 50, 1, 51, 27, 11, 11
Offset: 1

Author

Gus Wiseman, Dec 28 2018

Keywords

Examples

			Column n lists the a(n) positive integers less than n with more prime factors than n:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
  ---------------------------------------------------------------------
              4     6     8  8   10      12  12  12      16  16  18  16
                    4            9       10  8   8       15      16
                                 8       9               14      15
                                 6       8               12      14
                                 4       6               10      12
                                         4               9       10
                                                         8       9
                                                         6       8
                                                         4       6
                                                                 4
		

Crossrefs

Positions of zeros appear to be A029744.

Programs

  • Mathematica
    Table[Length[Select[Range[n],PrimeOmega[#]>PrimeOmega[n]&]],{n,100}]

A278291 Numbers n such that n-1 has the same number of prime factors as n (with multiplicity).

Original entry on oeis.org

3, 10, 15, 22, 26, 28, 34, 35, 39, 45, 58, 76, 86, 87, 94, 95, 99, 117, 119, 122, 123, 125, 134, 136, 142, 143, 146, 148, 154, 159, 165, 171, 172, 175, 178, 202, 203, 206, 214, 215, 218, 219, 231, 245, 246, 254, 285, 286, 297, 299, 302, 303, 327, 333, 335, 351, 357, 362, 370, 376, 382, 388, 394, 395
Offset: 1

Author

Ely Golden, Nov 16 2016

Keywords

Examples

			a(1)=3, as both 2 and 3 have 1 prime factor. a(2)=10, as both 9 and 10 have 2 prime factors. a(3)=15, as both 14 and 15 have 2 prime factors.
		

Programs

  • Java
    public class A278291{
    public static void main(String[] args)throws Exception{
        long dim0=numberOfPrimeFactors(2);//note that this method must be manually implemented by the user
        long dim1;
        long counter=3;
        long index=1;
        while(index<=10000){
          dim1=numberOfPrimeFactors(counter);
          if(dim1==dim0){System.out.println(index+" "+counter);index++;}
          dim0=dim1;
          counter++;
        }
      }
    }
    
  • Mathematica
    fQ[n_] := PrimeOmega[n - 1] == PrimeOmega[n]; Select[Range@400, fQ] (* Robert G. Wilson v, Nov 17 2016 *)
  • PARI
    is(n) = bigomega(n)==bigomega(n-1) \\ Felix Fröhlich, Nov 17 2016
  • SageMath
    def bigomega(x):
        s=0;
        f=list(factor(x));
        for c in range(len(f)):
            s+=f[c][1]
        return s;
    dim0=bigomega(2);
    counter=3
    index=1
    while(index<=10000):
        dim1=bigomega(counter);
        if(dim1==dim0):
            print(str(index)+" "+str(counter))
            index+=1;
        dim0=dim1;
        counter+=1;
    

Formula

a(n) = A045920(n) + 1. - Robert G. Wilson v, Nov 17 2016

A322839 Numbers n with more prime factors (counted with multiplicity) than n+1.

Original entry on oeis.org

4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 45, 46, 48, 50, 52, 54, 56, 58, 60, 64, 66, 68, 70, 72, 76, 78, 80, 81, 82, 84, 88, 90, 92, 96, 100, 102, 104, 105, 106, 108, 110, 112, 114, 117, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150
Offset: 1

Author

Gus Wiseman, Dec 28 2018

Keywords

Comments

First differs from A074827 in having 104.

Examples

			104 has four prime factors (2, 2, 2, 13), while 105 has only three (3, 5, 7), so 104 belongs to the sequence.
		

Programs

A358817 Numbers k such that A046660(k) = A046660(k+1).

Original entry on oeis.org

1, 2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 44, 46, 49, 57, 58, 61, 65, 66, 69, 70, 73, 75, 77, 78, 80, 82, 85, 86, 93, 94, 98, 101, 102, 105, 106, 109, 110, 113, 114, 116, 118, 122, 129, 130, 133, 135, 137, 138, 141, 142, 145, 147, 154, 157
Offset: 1

Author

Amiram Eldar, Dec 02 2022

Keywords

Comments

First differs from its subsequence A007674 at n=18.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 5, 38, 369, 3655, 36477, 364482, 3644923, 36449447, 364494215, 3644931537, ... . Apparently, the asymptotic density of this sequence exists and equals 0.36449... .

Crossrefs

Cf. A046660.
Subsequences: A007674, A052213, A085651, A358818.
Similar sequences: A002961, A005237, A006049, A045920.

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, e1 = 0, e2}, Do[e2 = PrimeOmega[k] - PrimeNu[k]; If[e1 == e2, AppendTo[s, k - 1]]; e1 = e2, {k, 2, kmax}]; s]; seq[160]
  • PARI
    e(n) = {my(f = factor(n)); bigomega(f) - omega(f)};
    lista(nmax) = {my(e1 = e(1), e2); for(n=2, nmax, e2=e(n); if(e1 == e2, print1(n-1,", ")); e1 = e2);}
Previous Showing 11-20 of 39 results. Next