cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 77 results. Next

A318896 Numbers k such that k and k+1 are the product of exactly four distinct primes.

Original entry on oeis.org

7314, 8294, 8645, 11570, 13629, 13845, 15105, 15554, 16554, 17390, 17654, 18290, 19005, 20405, 20769, 21489, 22010, 22154, 23001, 23114, 23529, 24530, 24765, 24870, 24969, 25346, 26690, 26894, 26961, 27434, 27965, 28105, 29145, 29210, 29414, 29469, 29666, 30414
Offset: 1

Views

Author

Seiichi Manyama, Sep 05 2018

Keywords

Comments

This sequence is different from A140078. For example, A140078(4) = 9009 = 3^2 * 7 * 11 * 13 is not a term.

Examples

			n | a(n)                    | a(n)+1
--+-------------------------+-------------------------
1 | 7314 = 2 *  3 * 23 * 53 | 7315 = 5 * 7 * 11 *  19
2 | 8294 = 2 * 11 * 13 * 29 | 8295 = 3 * 5 *  7 *  79
3 | 8645 = 5 *  7 * 13 * 19 | 8646 = 2 * 3 * 11 * 131
		

Crossrefs

Subsequence of A140078.

Programs

  • PARI
    is(n) = omega(n)==4 && omega(n+1)==4 && bigomega(n)==4 && bigomega(n+1)==4 \\ Felix Fröhlich, Sep 05 2018
    
  • PARI
    is(n) = factor(n)[, 2]~ == [1, 1, 1, 1] && factor(n+1)[, 2]~ == [1, 1, 1, 1] \\ David A. Corneth, Sep 06 2018

A350352 Products of three or more distinct prime numbers.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 210, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 330, 345, 354, 357, 366, 370, 374, 385, 390, 399, 402, 406, 410, 418, 426, 429, 430
Offset: 1

Views

Author

Gus Wiseman, Jan 11 2022

Keywords

Comments

First differs from A336568 in lacking 420.

Examples

			The terms and their prime indices begin:
     30: {1,2,3}     182: {1,4,6}      285: {2,3,8}
     42: {1,2,4}     186: {1,2,11}     286: {1,5,6}
     66: {1,2,5}     190: {1,3,8}      290: {1,3,10}
     70: {1,3,4}     195: {2,3,6}      310: {1,3,11}
     78: {1,2,6}     210: {1,2,3,4}    318: {1,2,16}
    102: {1,2,7}     222: {1,2,12}     322: {1,4,9}
    105: {2,3,4}     230: {1,3,9}      330: {1,2,3,5}
    110: {1,3,5}     231: {2,4,5}      345: {2,3,9}
    114: {1,2,8}     238: {1,4,7}      354: {1,2,17}
    130: {1,3,6}     246: {1,2,13}     357: {2,4,7}
    138: {1,2,9}     255: {2,3,7}      366: {1,2,18}
    154: {1,4,5}     258: {1,2,14}     370: {1,3,12}
    165: {2,3,5}     266: {1,4,8}      374: {1,5,7}
    170: {1,3,7}     273: {2,4,6}      385: {3,4,5}
    174: {1,2,10}    282: {1,2,15}     390: {1,2,3,6}
		

Crossrefs

This is the squarefree case of A033942.
Including squarefree semiprimes gives A120944.
The squarefree complement consists of 1 and A167171.
These are the Heinz numbers of the partitions counted by A347548.
A000040 lists prime numbers (exactly 1 prime factor).
A005117 lists squarefree numbers.
A006881 lists squarefree numbers with exactly 2 prime factors.
A007304 lists squarefree numbers with exactly 3 prime factors.
A046386 lists squarefree numbers with exactly 4 prime factors.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]>=3&]
  • PARI
    is(n,f=factor(n))=my(e=f[,2]); #e>2 && vecmax(e)==1 \\ Charles R Greathouse IV, Jul 08 2022
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=30,lim\1, if(#n[2][,2]>2, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jul 08 2022
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n, multiple=True); return len(f) == len(set(f)) > 2
    print([k for k in range(431) if ok(k)]) # Michael S. Branicky, Jan 14 2022
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A350352(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(3,x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 11 2024
    

A275387 Numbers of ordered pairs of divisors d < e of n such that gcd(d, e) > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 6, 0, 8, 0, 8, 2, 2, 0, 18, 1, 2, 3, 8, 0, 15, 0, 10, 2, 2, 2, 24, 0, 2, 2, 18, 0, 15, 0, 8, 8, 2, 0, 32, 1, 8, 2, 8, 0, 18, 2, 18, 2, 2, 0, 44, 0, 2, 8, 15, 2, 15, 0, 8, 2, 15, 0, 49, 0, 2, 8, 8, 2, 15, 0, 32, 6, 2
Offset: 1

Views

Author

Michel Lagneau, Aug 03 2016

Keywords

Comments

Number of elements in the set {(x, y): x|n, y|n, x < y, gcd(x, y) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n)=0 if n prime;
a(n)=1 if n = p^2 for p prime (A001248);
a(n)=2 if n is a squarefree semiprime (A006881);
a(n)=3 if n = p^3 for p prime (A030078);
a(n)=6 if n = p^4 for p prime (A030514);
a(n)=8 if n is a number which is the product of a prime and the square of a different prime (A054753);
a(n)=10 if n = p^5 for p prime (A050997);
a(n)=15 if n is in the set {A007304} union {64} = {30, 42, 64, 66, 70,...} = {Sphenic numbers} union {64};
a(n)=18 if n is the product of the cube of a prime (A030078) and a different prime (see A065036);
a(n)=21 if n = p^7 for p prime (A092759);
a(n)=24 if n is square of a squarefree semiprime (A085986);
a(n)=32 if n is the product of the 4th power of a prime (A030514) and a different prime (see A178739);
a(n)=36 if n = p^9 for p prime (A179665);
a(n)=44 if n is the product of exactly four primes, three of which are distinct (A085987);
a(n)=45 if n is a number with 11 divisors (A030629);
a(n)=49 if n is of the form p^2*q^3, where p,q are distinct primes (A143610);
a(n)=50 if n is the product of the 5th power of a prime (A050997) and a different prime (see A178740);
a(n)=55 if n if n = p^11 for p prime(A079395);
a(n)=72 if n is a number with 14 divisors (A030632);
a(n)=80 if n is the product of four distinct primes (A046386);
a(n)=83 if n is a number with 15 divisors (A030633);
a(n)=89 if n is a number with prime factorization pqr^3 (A189975);
a(n)=96 if n is a number that are the cube of a product of two distinct primes (A162142);
a(n)=98 if n is the product of the 7th power of a prime and a distinct prime (p^7*q) (A179664);
a(n)=116 if n is the product of exactly 2 distinct squares of primes and a different prime (p^2*q^2*r) (A179643);
a(n)=126 if n is the product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2) (A179646);
a(n)=128 if n is the product of the 8th power of a prime and a distinct prime (p^8*q) (A179668);
a(n)=150 if n is the product of the 4th power of a prime and 2 different distinct primes (p^4*q*r) (A179644);
a(n)=159 if n is the product of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3) (A179666).
It is possible to continue with a(n) = 162, 178, 209, 224, 227, 238, 239, 260, 289, 309, 320, 333,...

Examples

			a(12) = 8 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j)>1 for the 8 following pairs of divisors: (2,4), (2,6), (2,12), (3,6), (3,12), (4,6), (4,12) and (6,12).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    x:=divisors(n):n0:=nops(x):it:=0:
    for i from 1 to n0 do:
      for j from i+1 to n0 do:
       if gcd(x[i],x[j])>1
        then
        it:=it+1:
        else
       fi:
      od:
    od:
      printf(`%d, `,it):
    od:
  • Mathematica
    Table[Sum[Sum[(1 - KroneckerDelta[GCD[i, k], 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Jan 01 2021 *)
  • PARI
    a(n)=my(d=divisors(n)); sum(i=2,#d, sum(j=1,i-1, gcd(d[i],d[j])>1)) \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    a(n)=my(f=factor(n)[,2],t=prod(i=1,#f,f[i]+1)); t*(t-1)/2 - (prod(i=1,#f,2*f[i]+1)+1)/2 \\ Charles R Greathouse IV, Aug 03 2016

Formula

a(n) = A066446(n) - A063647(n).
a(n) = Sum_{d1|n, d2|n, d1Wesley Ivan Hurt, Jan 01 2021

A046402 Numbers with exactly 4 distinct palindromic prime factors.

Original entry on oeis.org

210, 330, 462, 770, 1155, 3030, 3930, 4242, 4530, 5430, 5502, 5730, 6342, 6666, 7070, 7602, 8022, 8646, 9170, 9390, 9966, 10570, 10590, 10605, 11110, 11190, 11490, 11946, 12606, 12670, 13146, 13370, 13755, 14410, 14826, 15554, 15666, 15855, 16086, 16610, 16665
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Intersection of A033620 and A046386.
Cf. A046370.

Programs

  • Mathematica
    Take[Times@@@Module[{nn=300,pp},pp=Select[Prime[Range[nn]],PalindromeQ];Subsets[pp,{4}]]//Union,40] (* Harvey P. Dale, Aug 13 2024 *)

Extensions

Offset changed and a(37) onwards from Andrew Howroyd, Aug 14 2024

A176170 Smallest prime-factor of n-th product of 4 distinct primes.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Keywords

Comments

FactorInteger[210]=2*3*5*7,...

Crossrefs

Programs

  • Mathematica
    f0[n_]:=Last/@FactorInteger[n]=={1,1,1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=First/@FactorInteger[n][[2,1]];f3[n_]:=First/@FactorInteger[n][[3,1]];f4[n_]:=Max[First/@FactorInteger[n]];lst={};Do[If[f0[n],AppendTo[lst,f1[n]]],{n,0,2*7!}];lst
  • PARI
    n=0; i=0; while(i<10000,n++;if((4 == bigomega(n))&&(4 == omega(n)),i++;write("b176170.txt", i, " ", factor(n)[1,1]))); \\ Antti Karttunen, Dec 06 2017

Formula

a(n) = A020639(A046386(n)). - Antti Karttunen, Dec 06 2017

A238397 Numbers of the form pq + qr + rp where p, q and r are distinct primes (sorted sequence without duplicates).

Original entry on oeis.org

31, 41, 59, 61, 71, 87, 91, 101, 103, 113, 119, 121, 129, 131, 143, 151, 161, 167, 171, 185, 191, 199, 211, 213, 215, 221, 227, 239, 241, 243, 247, 251, 263, 269, 271, 275, 281, 293, 297, 299, 301, 311, 321, 327, 331, 339, 341, 343, 347, 355
Offset: 1

Views

Author

Jean-François Alcover, Feb 26 2014

Keywords

Comments

Numbers of the form e2(p, q, r) for distinct primes p, q, r, where e2 is the elementary symmetric polynomial of degree 2. Other sequences are obtained with different numbers of distinct primes and degrees: A000040 for 1 prime, A038609 and A006881 for 2 primes, A124867, this sequence, and A007304 for 3 primes. The 4-prime sequences are not presently in the OEIS with the exception of A046386. - Charles R Greathouse IV, Feb 26 2014

Examples

			71 = 3*5 + 5*7 + 7*3 = 2*3 + 3*13 + 13*2 is in the sequence (only once, though 2 solutions exist).
		

Crossrefs

Programs

  • Mathematica
    terms = 50; dm (* initial number of primes *) = 10; f[p_, q_, r_] := p*q + q*r + r*p; Clear[A238397]; A238397[m_] := A238397[m] = Take[u = Union[f @@@ Subsets[Prime /@ Range[m], {3}]], Min[Length[u], terms]]; A238397[dm]; A238397[m = 2*dm]; While[Print["m = ", m]; A238397[m] != A238397[m - dm], m = m + dm]; A238397[m]
  • PARI
    is(n)=forprime(r=(sqrtint(3*n-3)+5)\3, (n-6)\5, forprime(q= sqrtint(r^2+n)-r+1, min((n-2*r)\(r+2), r-2), if((n-q*r)%(q+r)==0 && isprime((n-q*r)/(q+r)), return(1)))); 0 \\ Charles R Greathouse IV, Feb 26 2014
    
  • PARI
    list(n)=my(v=List()); forprime(r=5, (n-6)\5, forprime(q=3, min((n-2*r)\(r+2), r-2), my(S=q+r, P=q*r); forprime(p=2, min((n-P)\S, q-1), listput(v, p*S+P)))); Set(v) \\ Charles R Greathouse IV, Feb 26 2014

A279686 Numbers that are the least integer of a prime tower factorization equivalence class (see Comments for details).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 30, 36, 40, 48, 60, 64, 72, 81, 90, 108, 144, 162, 180, 192, 200, 210, 225, 240, 256, 280, 320, 324, 360, 405, 420, 432, 450, 500, 512, 540, 576, 600, 630, 648, 720, 768, 810, 900, 960, 1260, 1280, 1296, 1350, 1400, 1536, 1575, 1600
Offset: 1

Views

Author

Rémy Sigrist, Dec 16 2016

Keywords

Comments

The prime tower factorization of a number is defined in A182318.
We say that two numbers, say n and m, belong to the same prime tower factorization equivalence class iff there is a permutation of the prime numbers, say f, such that replacing each prime p by f(p) in the prime tower factorization of n leads to m.
The notion of prime tower factorization equivalence class can be seen as a generalization of the notion of prime signature; thereby, this sequence can be seen as an equivalent of A025487.
This sequence contains all primorial numbers (A002110).
This sequence contains A260548.
This sequence contains the terms > 0 in A014221.
If n appears in the sequence, then 2^n appears in the sequence.
If n appears in the sequence and k>=0, then A002110(k)^n appears in the sequence.
With the exception of term 1, this sequence contains no term from A182318.
Odd numbers appearing in this sequence: 1, 81, 225, 405, 1575, 2025, 2835, 6125, 10125, 11025, 14175, 15625, 16875, 17325, 31185, 33075, 50625, 67375, 70875, 99225, ...
Here are some prime tower factorization equivalence classes:
- Class 1: the number one (the only finite equivalence class),
- Class p: the prime numbers (A000040),
- Class p*q: the squarefree semiprimes (A006881),
- Class p^p: the numbers of the form p^p with p prime (A051674),
- Class p^q: the numbers of the form p^q with p and q distinct primes,
- Class p*q*r: the sphenic numbers (A007304),
- Class p*q*r*s: the products of four distinct primes (A046386),
- Class p*q*r*s*t: the products of five distinct primes (A046387),
- Class p*q*r*s*t*u: the products of six distinct primes (A067885).

Examples

			2 is the least number of the form p with p prime, hence 2 appears in the sequence.
6 is the least number of the form p*q with p and q distinct primes, hence 6 appears in the sequence.
72 is the least number of the form p^q*q^p with p and q distinct primes, hence 72 appears in the sequence.
36000 is the least number of the form p^q*q^r*r^p with p, q and r distinct primes, hence 36000 appears in the sequence.
		

Crossrefs

A294751 Squarefree products of k primes that are symmetrically distributed around their average. Case k = 4.

Original entry on oeis.org

2145, 4641, 4845, 5005, 9177, 11305, 13485, 13585, 17017, 21489, 21505, 23529, 26445, 31465, 31857, 33649, 35409, 35581, 36685, 42441, 43401, 46189, 46345, 49569, 50065, 53985, 60697, 61705, 63085, 63597, 65569, 67821, 69745, 77745, 80845, 83049, 87505, 88881
Offset: 1

Views

Author

Paolo P. Lava, Nov 08 2017

Keywords

Examples

			2145 = 3*5*11*13. Prime factors average is (3 + 5 + 11 + 13)/4 = 8 and 3 + 5 = 8 = 13 - 5, 5 + 3 = 8 = 11 - 3.
		

Crossrefs

Subsequence of A046386.
Cf. A006881 (k=2), A262723 (k=3), A294752 (k=5), A294776 (k=6).

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,k,n,ok;
    for n from 2*3*5*7 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2];
    if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1;
    for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,4);
    # Alternative:
    N:= 10^5: # to get terms <= N
    M:= floor(max(fsolve(3*5*(M-5)*(M-3) = N))):
    P:= select(isprime, [seq(i,i=3..M/2,2)]): nP:= nops(P):
    Res:= NULL:
    for m from 10 by 2 to M do
      for ix from 1 to nP-2 do
        x:= P[ix];
        if x >= m/2 or (x*(m-x))^2 >= N then break fi;
        if not isprime(m-x) then next fi;
        for iy from ix+1 to nP-1 do
          y:= P[iy];
          if y >= m/2 or x*(m-x)*y*(m-y) >= N then break fi;
          if not isprime(m-y) then next fi;
          Res:= Res, x*(m-x)*y*(m-y);
    od od od:
    sort([Res]); # Robert Israel, May 19 2019
  • PARI
    isok(n, nb=4) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ Michel Marcus, Nov 10 2017

Extensions

More terms from Giovanni Resta, Nov 09 2017

A176686 Numbers n such that n^2-1 are products of 3 distinct primes.

Original entry on oeis.org

14, 16, 20, 22, 32, 36, 38, 40, 52, 54, 58, 66, 68, 70, 78, 84, 88, 90, 96, 110, 112, 114, 128, 130, 132, 140, 156, 158, 162, 178, 182, 200, 210, 212, 222, 234, 238, 250, 252, 258, 264, 268, 292, 294, 306, 308, 310, 318, 330, 336, 338, 354, 366, 372, 378, 380
Offset: 1

Views

Author

Keywords

Comments

14^2-1=195=3*5*13, 16^2-1=255=3*5*17, 20^2-1=399=3*7*19.
All terms are even since n^2-1 for n odd is a multiple of 4. If m is a term, then (m-1, m+1) contains one prime and one nonsquare semiprime. - Chai Wah Wu, Mar 28 2016

Crossrefs

Programs

  • Mathematica
    Select[Range[6! ],Last/@FactorInteger[ #^2-1]=={1,1,1}&]
    Sqrt[#+1]&/@Select[Sort[Times@@@Subsets[Prime[Range[100]],{3}]], IntegerQ[ Sqrt[#+1]]&] (* Harvey P. Dale, Jul 24 2016 *)

A340467 a(n) is the n-th squarefree number having n prime factors.

Original entry on oeis.org

2, 10, 66, 462, 4290, 53130, 903210, 17687670, 406816410, 11125544430, 338431883790, 11833068917670, 457077357006270, 20384767656323070, 955041577211912190, 49230430891074322890, 2740956243836856315270, 168909608387276001835590, 11054926927790884163355330
Offset: 1

Views

Author

Alois P. Heinz, Jan 08 2021

Keywords

Comments

a(n) is the n-th product of n distinct primes.
All terms are even.
This sequence differs from A073329 which has also nonsquarefree terms.

Examples

			a(1) = A000040(1) = 2.
a(2) = A006881(2) = 10.
a(3) = A007304(3) = 66.
a(4) = A046386(4) = 462.
a(5) = A046387(5) = 4290.
a(6) = A067885(6) = 53130.
a(7) = A123321(7) = 903210.
a(8) = A123322(8) = 17687670.
a(9) = A115343(9) = 406816410.
a(10) = A281222(10) = 11125544430.
		

Crossrefs

Programs

  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A340467(n):
        if n == 1: return 2
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Formula

a(n) = A340316(n,n).
a(n) = A005117(m) <=> A072047(m) = n = A340313(m).
A001221(a(n)) = A001222(a(n)) = n.
a(n) < A070826(n+1), the least odd number with exactly n distinct prime divisors.
Previous Showing 21-30 of 77 results. Next