A104934
Expansion of (1-x)/(1 - 3*x - 2*x^2).
Original entry on oeis.org
1, 2, 8, 28, 100, 356, 1268, 4516, 16084, 57284, 204020, 726628, 2587924, 9217028, 32826932, 116914852, 416398420, 1483024964, 5281871732, 18811665124, 66998738836, 238619546756, 849856117940, 3026807447332, 10780134577876, 38394018628292, 136742325040628, 487015012378468, 1734529687216660
Offset: 0
- M. Aigner, A Course in Enumeration, Springer, 2007, p.103.
-
# Following the Pari implementation.
function a(n)
F = BigInt[0 1; 2 3]
Fn = F^n * [1; 2]
Fn[1, 1]
end # Peter Luschny, Jan 06 2019
-
m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1 - x)/(1 - 3*x - 2*x^2)); // Vincenzo Librandi, Jul 13 2018
-
a := proc(n) option remember; `if`(n < 2, [1, 2][n+1], (3*a(n-1) + 2*a(n-2))) end:
seq(a(n), n=0..28); # Peter Luschny, Jan 06 2019
-
LinearRecurrence[{3, 2}, {1, 2}, 40] (* Vincenzo Librandi, Jul 13 2018 *)
CoefficientList[Series[(1-x)/(1-3x-2x^2),{x,0,40}],x] (* Harvey P. Dale, May 02 2019 *)
-
a(n)=([0,1; 2,3]^n*[1;2])[1,1] \\ Charles R Greathouse IV, Jun 20 2015
-
[(i*sqrt(2))^(n-1)*(i*sqrt(2)*chebyshev_U(n, -3*i/(2*sqrt(2))) - chebyshev_U(n-1, -3*i/(2*sqrt(2))) ) for n in (0..40)] # G. C. Greubel, Jun 27 2021
A102900
a(n) = 3*a(n-1) + 4*a(n-2), a(0)=a(1)=1.
Original entry on oeis.org
1, 1, 7, 25, 103, 409, 1639, 6553, 26215, 104857, 419431, 1677721, 6710887, 26843545, 107374183, 429496729, 1717986919, 6871947673, 27487790695, 109951162777, 439804651111, 1759218604441, 7036874417767, 28147497671065
Offset: 0
- Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
- Index entries for linear recurrences with constant coefficients, signature (3,4).
-
a102900 n = a102900_list !! n
a102900_list = 1 : 1 : zipWith (+)
(map (* 4) a102900_list) (map (* 3) $ tail a102900_list)
-- Reinhard Zumkeller, Feb 13 2015
-
[n le 2 select 1 else 3*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 28 2015
-
a[n_]:=(MatrixPower[{{2,2},{3,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{3, 4}, {1, 1}, 30] (* Vincenzo Librandi, Dec 28 2015 *)
-
a(n)=([0,1; 4,3]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Mar 28 2016
-
A102900=BinaryRecurrenceSequence(3,4,1,1)
[A102900(n) for n in range(51)] # G. C. Greubel, Dec 09 2022
A124182
A skewed version of triangular array A081277.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 0, 3, 4, 0, 0, 1, 8, 8, 0, 0, 0, 5, 20, 16, 0, 0, 0, 1, 18, 48, 32, 0, 0, 0, 0, 7, 56, 112, 64, 0, 0, 0, 0, 1, 32, 160, 256, 128, 0, 0, 0, 0, 0, 9, 120, 432, 576, 256, 0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 0, 3, 4;
0, 0, 1, 8, 8;
0, 0, 0, 5, 20, 16;
0, 0, 0, 1, 18, 48, 32;
0, 0, 0, 0, 7, 56, 112, 64;
0, 0, 0, 0, 1, 32, 160, 256, 128;
0, 0, 0, 0, 0, 9, 120, 432, 576, 256;
0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512;
A212435
Expansion of e.g.f.: exp(-x) / cosh(2*x).
Original entry on oeis.org
1, -1, -3, 11, 57, -361, -2763, 24611, 250737, -2873041, -36581523, 512343611, 7828053417, -129570724921, -2309644635483, 44110959165011, 898621108880097, -19450718635716001, -445777636063460643, 10784052561125704811, 274613643571568682777
Offset: 0
G.f. = 1 - x - 3*x^2 + 11*x^3 + 57*x^4 - 361*x^5 - 2763*x^6 + 24611*x^7 + ...
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x)/Cosh(2*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 10 2018
-
CoefficientList[Series[2*E^x/(E^(4*x)+1), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 25 2014 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ -x] / Cosh[ 2 x], {x, 0, n}]]; (* Michael Somos, Aug 26 2015 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( exp(-x + A) / cosh( 2*x + A), n))};
-
@CachedFunction
def p(n,x) :
if n == 0 : return 1
w = -1 if n%2 == 0 else 0
v = 1 if n%2 == 0 else -1
return v*add(p(k,0)*binomial(n,k)*(x^(n-k)+w) for k in range(n)[::2])
def A212435(n) : return 2^n*p(n, 1/2)
[A212435(n) for n in (0..20)] # Peter Luschny, Jul 19 2012
A080928
Triangle T(n,k) read by rows: T(n,k) = Sum_{i=0..n} C(n,2i)*C(2i,k).
Original entry on oeis.org
1, 1, 0, 2, 2, 1, 4, 6, 3, 0, 8, 16, 12, 4, 1, 16, 40, 40, 20, 5, 0, 32, 96, 120, 80, 30, 6, 1, 64, 224, 336, 280, 140, 42, 7, 0, 128, 512, 896, 896, 560, 224, 56, 8, 1, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 0, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10
Offset: 0
Triangle begins:
1;
1, 0;
2, 2, 1;
4, 6, 3, 0;
8, 16, 12, 4, 1;
16, 40, 40, 20, 5, 0;
32, 96, 120, 80, 30, 6, 1;
64, 224, 336, 280, 140, 42, 7, 0;
128, 512, 896, 896, 560, 224, 56, 8, 1;
256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 0; etc.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 156.
- J-L. Kim, Relation between weight distribution and combinatorial identities, Bulletin of the Institute of Combinatorics and its Applications, Canada, 31, 2001, pp. 69-79.
Apart from k=n, T(n, k) equals (1/2)*
A038207(n, k).
-
Table[Sum[Binomial[n, 2 i] Binomial[2 i, k], {i, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 11 2018 *)
A122951
Number of walks from (0,0) to (n,n) in the region x >= y with the steps (1,0), (0,1), (2,0) and (0,2).
Original entry on oeis.org
1, 1, 5, 22, 117, 654, 3843, 23323, 145172, 921508, 5942737, 38825546, 256431172, 1709356836, 11485249995, 77703736926, 528893901963, 3619228605738, 24884558358426, 171828674445330, 1191050708958096, 8284698825305832
Offset: 0
a(2) = 5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2).
-
N:= 100: # to get a[0] to a[N]
S:= series(RootOf(z^4*F^4-2*z^3*F^3-z^2*F^3+2*z^2*F^2+3*z*F^2-2*z*F-F+1,F), z, N+1):
seq(coeff(S,z,j),j=0..N); # Robert Israel, Feb 18 2013
-
f[x_] = (2x+Sqrt[4(x-2)x+1] - Sqrt[2]Sqrt[2x(-2x + Sqrt[4(x-2)x+1]-1) + Sqrt[4(x-2)x+1]+1]+1)/(4x^2);
CoefficientList[Series[f[x],{x,0,21}],x]
(* Jean-François Alcover, May 19 2011, after g.f. *)
A201701
Riordan triangle ((1-x)/(1-2*x), x^2/(1-2*x)).
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 4, 3, 0, 0, 8, 8, 1, 0, 0, 16, 20, 5, 0, 0, 0, 32, 48, 18, 1, 0, 0, 0, 64, 112, 56, 7, 0, 0, 0, 0, 128, 256, 160, 32, 1, 0, 0, 0, 0, 256, 576, 432, 120, 9, 0, 0, 0, 0, 0, 512, 1280, 1120, 400, 50, 1, 0, 0, 0, 0, 0
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 ...
0: 1
1: 1 0
2: 2 1 0
3: 4 3 0 0
4: 8 8 1 0 0
5: 16 20 5 0 0 0
6: 32 48 18 1 0 0 0
7: 64 112 56 7 0 0 0 0
8: 128 256 160 32 1 0 0 0 0
9: 256 576 432 120 9 0 0 0 0 0
10: 512 1280 1120 400 50 1 0 0 0 0 0
11: 1024 2816 2816 1232 220 11 0 0 0 0 0 0
... reformatted and extended. - _Wolfdieter Lang_, Aug 06 2014
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[(1 - #)/(1 - 2 #)&, #^2/(1 - 2 #)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
A102345
a(n) = 3^n + (-1)^n.
Original entry on oeis.org
2, 2, 10, 26, 82, 242, 730, 2186, 6562, 19682, 59050, 177146, 531442, 1594322, 4782970, 14348906, 43046722, 129140162, 387420490, 1162261466, 3486784402, 10460353202, 31381059610, 94143178826, 282429536482, 847288609442
Offset: 0
Apart from leading term, same as
A084182.
-
Table[3^n+(-1)^n,{n,0,30}] (* or *) LinearRecurrence[{2,3},{2,2},30] (* Harvey P. Dale, Jun 19 2016 *)
-
[lucas_number2(n,2,-3) for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
A080925
Binomial transform of Jacobsthal gap sequence (A080924).
Original entry on oeis.org
0, 1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165
Offset: 0
-
CoefficientList[Series[x (1 + 3 x) / ((1 + x) (1 - 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *)
A092437
Triangle read by rows, arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 6, 6, 1, 1, 5, 13, 26, 30, 20, 1, 1, 5, 13, 41, 90, 140, 140, 70, 1, 1, 5, 13, 41, 121, 302, 560, 742, 630, 252
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
Triangle begins:
1;
1, 1, 2;
1, 1, 5, 6, 6;
1, 1, 5, 13, 26, 30, 20;
...
- James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
Previous
Showing 21-30 of 56 results.
Next
Comments