cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A080926 Partial sums of A080925.

Original entry on oeis.org

0, 1, 6, 19, 60, 181, 546, 1639, 4920, 14761, 44286, 132859, 398580, 1195741, 3587226, 10761679, 32285040, 96855121, 290565366, 871696099, 2615088300, 7845264901, 23535794706, 70607384119, 211822152360, 635466457081
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Comments

This is the sequence A(0,1;2,3;4) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. [Wolfdieter Lang, Oct 18 2010]

Programs

  • Magma
    [(3*3^n+(-1)^n)/4-1: n in [0..30]]; // Vincenzo Librandi, Aug 06 2013
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+4 od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
  • Mathematica
    CoefficientList[Series[x (1 + 3 x) / ((1 + x) (1 - x) (1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{3,1,-3},{0,1,6},30] (* Harvey P. Dale, Oct 02 2018 *)

Formula

a(n) = Sum{i=0..n, Sum{k=1..i, Binomial(i, 2k-2)2^(2k-2)}}
G.f.: x*(1+3*x)/((1+x)*(1-x)*(1-3x)).
E.g.f.: (3*exp(3x)+exp(-x))/4-exp(x).
a(n) = (3*3^n+(-1)^n)/4-1.
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) for n>2, a(0)=0, a(1)=1, a(2)=6. Observation by G. Detlefs. See my comment and link. [Wolfdieter Lang, Oct 18 2010]

A083420 a(n) = 2*4^n - 1.

Original entry on oeis.org

1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0

Views

Author

Paul Barry, Apr 29 2003

Keywords

Comments

Sum of divisors of 4^n. - Paul Barry, Oct 13 2005
Subsequence of A000069; A132680(a(n)) = A005408(n). - Reinhard Zumkeller, Aug 26 2007
If x = a(n), y = A000079(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
It seems that a(n) divides A001676(3+4n). Several other entries apparently have this sequence embedded in them, e.g., A014551, A168604, A213243, A213246-8, and A279872. - Tom Copeland, Dec 27 2016
To elaborate on Librandi's comment from 2014: all these numbers, even if prime in Z, are sure not to be prime in Z[sqrt(2)], since a(n) can at least be factored as ((2^(2n + 1) - 1) - (2^(2n) - 1)*sqrt(2))((2^(2n + 1) - 1) + (2^(2n) - 1)*sqrt(2)). For example, 7 = (3 - sqrt(2))(3 + sqrt(2)), 31 = (7 - 3*sqrt(2))(7 + 3*sqrt(2)), 127 = (15 - 7*sqrt(2))(15 + 7*sqrt(2)). - Alonso del Arte, Oct 17 2017
Largest odd factors of A147590. - César Aguilera, Jan 07 2020

Crossrefs

Cf. A083421, A000668 (primes in this sequence), A004171, A000244.
Cf. A000302.

Programs

Formula

G.f.: (1+2*x)/((1-x)*(1-4*x)).
E.g.f.: 2*exp(4*x)-exp(x).
With a leading zero, this is a(n) = (4^n - 2 + 0^n)/2, the binomial transform of A080925. - Paul Barry, May 19 2003
From Benoit Cloitre, Jun 18 2004: (Start)
a(n) = (-16^n/2)*B(2n, 1/4)/B(2n) where B(n, x) is the n-th Bernoulli polynomial and B(k) = B(k, 0) is the k-th Bernoulli number.
a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = (-4^n/2)*B(2*n, 1/2)/B(2*n). (End)
a(n) = A099393(n) + A020522(n) = A000302(n) + A024036(n). - Reinhard Zumkeller, Feb 07 2006
a(n) = Stirling2(2*(n+1), 2). - Zerinvary Lajos, Dec 06 2006
a(n) = 4*a(n-1) + 3 with n > 0, a(0) = 1. - Vincenzo Librandi, Dec 30 2010
a(n) = A001576(n+1) - 2*A001576(n). - Brad Clardy, Mar 26 2011
a(n) = 6*A002450(n) + 1. - Roderick MacPhee, Jul 06 2012
a(n) = A000203(A000302(n)). - Michel Marcus, Jan 20 2014
a(n) = Sum_{i = 0..n} binomial(2n+2, 2i). - Wesley Ivan Hurt, Mar 14 2015
a(n) = (1/4^n) * Sum_{k = 0..n} binomial(2*n+1,2*k)*9^k. - Peter Bala, Feb 06 2019
a(n) = A147590(n)/A000079(n). - César Aguilera, Jan 07 2020

A046717 a(n) = 2*a(n-1) + 3*a(n-2), a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165, 3812798742493, 11438396227481
Offset: 0

Views

Author

Gervais Deroo and M. Deroo

Keywords

Comments

Form the digraph with matrix A = [0,1,1,1; 1,0,1,1; 1,1,0,1; 1,0,1,1]. Then the sequence 0,1,1,5,... or (3^(n-1)-(-1)^n)/2+0^n/3 with g.f. x(1-x)/(1-2x-3x^2) corresponds to the (1,2) term of A^n. - Paul Barry, Oct 02 2004
3*a(n+1) + a(n) = 4*A060925(n); a(n+1) = A015518(n) + A060925(n); a(n+1) - 6*A015518(n) = (-1)^n. - Creighton Dement, Nov 15 2004
The sequence corresponds to the (1,1) term of the matrix [1,2;2,1]^n. - Simone Severini, Dec 04 2004
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 4 times the bottom to get the new top. The limit of the sequence of fractions is 2. - Cino Hilliard, Sep 25 2005
a(n)^2 + (2*A015518(n))^2 = a(2n). E.g., a(3) = 13, 2*A015518(3) = 14, A046717(6) = 365. 13^2 + 14^2 = 365. - Gary W. Adamson, Jun 17 2006
Equals INVERTi transform of A104934: (1, 2, 8, 28, 100, 356, 1268, ...). - Gary W. Adamson, Jul 21 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 4 types of other natural numbers. - Milan Janjic, Aug 13 2010
An elephant sequence, see A175655. For the central square just one A[5] vector, with decimal value 341, leads to this sequence (without the first leading 1). For the corner squares this vector leads to the companion sequence A015518 (without the leading 0). - Johannes W. Meijer, Aug 15 2010
Pisano period lengths: 1, 1, 2, 1, 4, 2, 6, 4, 2, 4, 10, 2, 6, 6, 4, 8, 16, 2, 18, 4, ... - R. J. Mathar, Aug 10 2012
a(n) is the number of words of length n over a ternary alphabet whose position in the lexicographic order is a multiple of two. - Alois P. Heinz, Apr 13 2022
a(n) is the sum, for k=0..3, of the number of walks of length n between two vertices at distance k of the cube graph. - Miquel A. Fiol, Mar 09 2024

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

The first difference sequence of A015518.
Row sums of triangle A080928.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Cf. A015518.
Cf. A104934. - Gary W. Adamson, Jul 21 2010

Programs

  • Magma
    [n le 2 select 1 else 2*Self(n-1)+3*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
    
  • Magma
    [(3^n + (-1)^n)/2: n in [0..30]]; // G. C. Greubel, Jan 07 2018
  • Maple
    a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2] od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
    seq(denom(((-2)^(2*n)+6^(2*n))/((-2)^n+6^n)),n=0..26)
  • Mathematica
    Table[(3^n + (-1)^n)/2, {n, 0, 30}] (* Artur Jasinski, Dec 10 2006 *)
    CoefficientList[ Series[(1 - x)/(1 - 2x - 3x^2), {x, 0, 30}], x]  (* Robert G. Wilson v, Apr 04 2011 *)
    Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Apr 04 2011 *)
  • PARI
    {a(n) = (3^n+(-1)^n)/2};
    for(n=0,30, print1(a(n), ", ")) /* modified by G. C. Greubel, Jan 07 2018 */
    
  • PARI
    x='x+O('x^30); Vec((1-x)/((1+x)*(1-3*x))) \\ G. C. Greubel, Jan 07 2018
    
  • Sage
    [lucas_number2(n,2,-3)/2 for n in range(0, 27)] # Zerinvary Lajos, Apr 30 2009
    

Formula

G.f.: (1-x)/((1+x)*(1-3*x)).
a(n) = (3^n + (-1)^n)/2.
a(n) = Sum_{k=0..n} binomial(n, 2k)2^(2k). - Paul Barry, Feb 26 2003
Binomial transform of A000302 (powers of 4) with interpolated zeros. Inverse binomial transform of A081294. - Paul Barry, Mar 17 2003
E.g.f.: exp(x)cosh(2x). - Paul Barry, Mar 17 2003
a(n) = ceiling(3^n/4) + floor(3^n/4) = ceiling(3^n/4)^2 - floor(3^n/4)^2. - Paul Barry, Jan 17 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n,j)C(n-j,k)*(1+(-1)^(j-k))/2. - Paul Barry, May 21 2006
a(n) = Sum_{k=0..n} A098158(n,k)*4^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = (3^n + (-1)^n)/2. - M. F. Hasler, Mar 20 2008
a(n) = 2 A015518(n) + (-1)^n; for n > 0, a(n) = A080925(n). - M. F. Hasler, Mar 20 2008
((1 + sqrt4)^n + (1 - sqrt4)^n)/2. The offset is 0. a(3)=13. - Al Hakanson (hawkuu(AT)gmail.com), Nov 22 2008
If p[1]=1 and p[i]=4 (i > 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(4*k-1)/(x*(4*k+3) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
G.f.: G(0)/2, where G(k) = 1 + (-1)^k/(3^k - 3*9^k*x/(3*3^k*x + (-1)^k/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013

Extensions

Description corrected by and more terms from Michael Somos

A080924 Jacobsthal gap sequence.

Original entry on oeis.org

0, 1, 3, 1, 15, 1, 63, 1, 255, 1, 1023, 1, 4095, 1, 16383, 1, 65535, 1, 262143, 1, 1048575, 1, 4194303, 1, 16777215, 1, 67108863, 1, 268435455, 1, 1073741823, 1, 4294967295, 1, 17179869183, 1, 68719476735, 1, 274877906943, 1, 1099511627775, 1
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Comments

Inverse binomial transform of A080925
From Peter Bala, Dec 26 2012: (Start)
Let F(x) = product {n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number F(1/4) = 0.79761 68651 30459 16010 ... = 1/(1 + 1/(3 + 1/(1 + 1/(15 + 1/(1 + 1/(63 + 1/(1 + 1/(255 + ...)))))))). See A111317. (End)
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 3", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Apr 19 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 4 x) / ((1 + x) (1 + 2 x) (1 - 2 x)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 05 2013 *)
    LinearRecurrence[{-1, 4, 4}, {0, 1, 3}, 42] (* Jean-François Alcover, Sep 21 2017 *)

Formula

a(2n) = 3*A001045(2n) = 3*A002450(n) = 4^n-1, a(2n+1)=1.
a(n) = (2^n-2*(-1)^n+(-2)^n)/2.
G.f.: x*(1+4*x)/((1+x)*(1+2*x)*(1-2*x)).
E.g.f.: (exp(2*x)-2*exp(-x)+exp(-2*x))/2.

A164907 a(n) = (3*3^n-(-1)^n)/2.

Original entry on oeis.org

1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165
Offset: 0

Views

Author

Klaus Brockhaus, Aug 31 2009

Keywords

Comments

Interleaving of A096053 and A083884 without initial term 1.
Partial sums are (essentially) in A080926.
First differences are (essentially) in A105723.
a(n)+a(n+1) = A008776(n+1) = A099856(n+1) = A110593(n+2).
Binomial transform of A056450. Inverse binomial transform of A164908.

Crossrefs

Equals A046717 without initial term 1 and A080925 without initial term 0. Equals A084182 / 2 from second term onward.

Programs

Formula

a(n) = 2*a(n-1)+3*a(n-2) for n > 1; a(0) = 1, a(1) = 5.
G.f.: (1+3*x)/((1+x)*(1-3*x)).
a(n) = 3*a(n-1)+2*(-1)^n. - Carmine Suriano, Mar 21 2014
Showing 1-5 of 5 results.