cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A034839 Triangular array formed by taking every other term of each row of Pascal's triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 6, 1, 1, 10, 5, 1, 15, 15, 1, 1, 21, 35, 7, 1, 28, 70, 28, 1, 1, 36, 126, 84, 9, 1, 45, 210, 210, 45, 1, 1, 55, 330, 462, 165, 11, 1, 66, 495, 924, 495, 66, 1, 1, 78, 715, 1716, 1287, 286, 13
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n having k parts greater than 1. Example: T(5,2)=5 because we have 3+2, 2+3, 2+2+1, 2+1+2 and 1+2+2. Number of binary words of length n-1 having k runs of consecutive 1's. Example: T(5,2)=5 because we have 1010, 1001, 0101, 1101 and 1011. - Emeric Deutsch, Mar 30 2005
From Gary W. Adamson, Oct 17 2008: (Start)
Received from Herb Conn:
Let T = tan x, then
tan x = T
tan 2x = 2T / (1 - T^2)
tan 3x = (3T - T^3) / (1 - 3T^2)
tan 4x = (4T - 4T^3) / (1 - 6T^2 + T^4)
tan 5x = (5T - 10T^3 + T^5) / (1 - 10T^2 + 5T^4)
tan 6x = (6T - 20T^3 + 6T^5) / (1 - 15T^2 + 15T^4 - T^6)
tan 7x = (7T - 35T^3 + 21T^5 - T^7) / (1 - 21T^2 + 35T^4 - 7T^6)
tan 8x = (8T - 56T^3 + 56T^5 - 8T^7) / (1 - 28T^2 + 70T^4 - 28T^6 + T^8)
tan 9x = (9T - 84T^3 + 126T^5 - 36T^7 + T^9) / (1 - 36 T^2 + 126T^4 - 84T^6 + 9T^8)
... To get the next one in the series, (tan 10x), for the numerator add:
9....84....126....36....1 previous numerator +
1....36....126....84....9 previous denominator =
10..120....252...120...10 = new numerator
For the denominator add:
......9.....84...126...36...1 = previous numerator +
1....36....126....84....9.... = previous denominator =
1....45....210...210...45...1 = new denominator
...where numerators = A034867, denominators = A034839
(End)
Triangle, with zeros omitted, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
The row (1,66,495,924,495,66,1) plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534. - Tom Copeland, Dec 12 2016
Binomial(n,2k) is also the number of permutations avoiding both 123 and 132 with k ascents, i.e., positions with w[i]Lara Pudwell, Dec 19 2018
Coefficients in expansion of ((x-1)^n+(x+1)^n)/2 or ((x-i)^n+(x+i)^n)/2 with alternating sign. - Eugeniy Sokol, Sep 20 2020
Number of permutations of length n avoiding simultaneously the patterns 213 and 312 with the maximum number of non-overlapping descents equal k (equivalently, with the maximum number of non-overlapping ascents equal k). An ascent (resp., descent) in a permutation a(1)a(2)...a(n) is position i such that a(i) < a(i+1) (resp., a(i) > a(i+1)). - Tian Han, Nov 16 2023

Examples

			Triangular array begins:
  1
  1
  1  1
  1  3
  1  6  1
  1 10  5
  1 15 15 1
  ...
cosh(4x) = (cosh x)^5 + 10 (cosh x)^3 (sinh x)^2 + 5 (cosh x) (sinh x)^4, so row 4 is (1,10,5). See Mathematica program. - _Clark Kimberling_, Aug 03 2024
		

Crossrefs

Programs

  • Magma
    /* As a triangle */ [[Binomial(n,2*k):k in [0..Floor(n/2)]] : n in [0..10]]; // G. C. Greubel, Feb 23 2018
  • Maple
    for n from 0 to 13 do seq(binomial(n,2*k),k=0..floor(n/2)) od;# yields sequence in triangular form; # Emeric Deutsch, Mar 30 2005
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 12;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]  (* A034839 as a triangle *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]  (* A034867 as a triangle *)
    (* Clark Kimberling, Feb 18 2012 *)
    Table[Binomial[n, k], {n, 0, 13}, {k, 0, Floor[n, 2], 2}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
    (* The triangle gives coefficients for cosh(nx) as a linear combination of products (cosh(x)^h)*(sinh(x)^k) *)
    Column[Table[TrigExpand[Cosh[n  x]], {n, 0, 10}]]
    (* Clark Kimberling, Aug 03 2024 *)
  • PARI
    for(n=0,15, for(k=0,floor(n/2), print1(binomial(n, 2*k), ", "))) \\ G. C. Greubel, Feb 23 2018
    

Formula

E.g.f.: exp(x)*cosh(x*sqrt(y)). - Vladeta Jovovic, Mar 20 2005
From Emeric Deutsch, Mar 30 2005: (Start)
T(n, k) = binomial(n, 2*k), for n >= 0 and k = 0, 1, ..., floor(n/2).
G.f.: (1-z)/((1-z)^2 - t*z^2). (End)
O.g.f. for column no. k is (1/(1-x))*(x/(1-x))^(2*k), k >= 0 [from the g.f. given in the preceding formula]. - Wolfdieter Lang, Jan 18 2013
From Peter Bala, Jul 14 2015: (Start)
Stretched Riordan array ( 1/(1 - x ), x^2/(1 - x)^2 ) in the terminology of Corsani et al.
Denote this array by P. Then P * A007318 = A201701.
P * transpose(P) is A119326 read as a square array.
Let Q denote the array ( (-1)^k*binomial(2*n,k) )n,k>=0. Q is a signed version of A034870. Then Q*P = the identity matrix, that is, Q is a left-inverse array of P (see Corsani et al., p. 111).
P * A034870 = A080928. (End)
Even rows are A086645. An aerated version of this array is A099174 with each diagonal divided by the first element of the diagonal, the double factorials A001147. - Tom Copeland, Dec 12 2015

A046717 a(n) = 2*a(n-1) + 3*a(n-2), a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165, 3812798742493, 11438396227481
Offset: 0

Views

Author

Gervais Deroo and M. Deroo

Keywords

Comments

Form the digraph with matrix A = [0,1,1,1; 1,0,1,1; 1,1,0,1; 1,0,1,1]. Then the sequence 0,1,1,5,... or (3^(n-1)-(-1)^n)/2+0^n/3 with g.f. x(1-x)/(1-2x-3x^2) corresponds to the (1,2) term of A^n. - Paul Barry, Oct 02 2004
3*a(n+1) + a(n) = 4*A060925(n); a(n+1) = A015518(n) + A060925(n); a(n+1) - 6*A015518(n) = (-1)^n. - Creighton Dement, Nov 15 2004
The sequence corresponds to the (1,1) term of the matrix [1,2;2,1]^n. - Simone Severini, Dec 04 2004
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 4 times the bottom to get the new top. The limit of the sequence of fractions is 2. - Cino Hilliard, Sep 25 2005
a(n)^2 + (2*A015518(n))^2 = a(2n). E.g., a(3) = 13, 2*A015518(3) = 14, A046717(6) = 365. 13^2 + 14^2 = 365. - Gary W. Adamson, Jun 17 2006
Equals INVERTi transform of A104934: (1, 2, 8, 28, 100, 356, 1268, ...). - Gary W. Adamson, Jul 21 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 4 types of other natural numbers. - Milan Janjic, Aug 13 2010
An elephant sequence, see A175655. For the central square just one A[5] vector, with decimal value 341, leads to this sequence (without the first leading 1). For the corner squares this vector leads to the companion sequence A015518 (without the leading 0). - Johannes W. Meijer, Aug 15 2010
Pisano period lengths: 1, 1, 2, 1, 4, 2, 6, 4, 2, 4, 10, 2, 6, 6, 4, 8, 16, 2, 18, 4, ... - R. J. Mathar, Aug 10 2012
a(n) is the number of words of length n over a ternary alphabet whose position in the lexicographic order is a multiple of two. - Alois P. Heinz, Apr 13 2022
a(n) is the sum, for k=0..3, of the number of walks of length n between two vertices at distance k of the cube graph. - Miquel A. Fiol, Mar 09 2024

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

The first difference sequence of A015518.
Row sums of triangle A080928.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Cf. A015518.
Cf. A104934. - Gary W. Adamson, Jul 21 2010

Programs

  • Magma
    [n le 2 select 1 else 2*Self(n-1)+3*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
    
  • Magma
    [(3^n + (-1)^n)/2: n in [0..30]]; // G. C. Greubel, Jan 07 2018
  • Maple
    a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2] od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
    seq(denom(((-2)^(2*n)+6^(2*n))/((-2)^n+6^n)),n=0..26)
  • Mathematica
    Table[(3^n + (-1)^n)/2, {n, 0, 30}] (* Artur Jasinski, Dec 10 2006 *)
    CoefficientList[ Series[(1 - x)/(1 - 2x - 3x^2), {x, 0, 30}], x]  (* Robert G. Wilson v, Apr 04 2011 *)
    Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Apr 04 2011 *)
  • PARI
    {a(n) = (3^n+(-1)^n)/2};
    for(n=0,30, print1(a(n), ", ")) /* modified by G. C. Greubel, Jan 07 2018 */
    
  • PARI
    x='x+O('x^30); Vec((1-x)/((1+x)*(1-3*x))) \\ G. C. Greubel, Jan 07 2018
    
  • Sage
    [lucas_number2(n,2,-3)/2 for n in range(0, 27)] # Zerinvary Lajos, Apr 30 2009
    

Formula

G.f.: (1-x)/((1+x)*(1-3*x)).
a(n) = (3^n + (-1)^n)/2.
a(n) = Sum_{k=0..n} binomial(n, 2k)2^(2k). - Paul Barry, Feb 26 2003
Binomial transform of A000302 (powers of 4) with interpolated zeros. Inverse binomial transform of A081294. - Paul Barry, Mar 17 2003
E.g.f.: exp(x)cosh(2x). - Paul Barry, Mar 17 2003
a(n) = ceiling(3^n/4) + floor(3^n/4) = ceiling(3^n/4)^2 - floor(3^n/4)^2. - Paul Barry, Jan 17 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n,j)C(n-j,k)*(1+(-1)^(j-k))/2. - Paul Barry, May 21 2006
a(n) = Sum_{k=0..n} A098158(n,k)*4^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = (3^n + (-1)^n)/2. - M. F. Hasler, Mar 20 2008
a(n) = 2 A015518(n) + (-1)^n; for n > 0, a(n) = A080925(n). - M. F. Hasler, Mar 20 2008
((1 + sqrt4)^n + (1 - sqrt4)^n)/2. The offset is 0. a(3)=13. - Al Hakanson (hawkuu(AT)gmail.com), Nov 22 2008
If p[1]=1 and p[i]=4 (i > 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(4*k-1)/(x*(4*k+3) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
G.f.: G(0)/2, where G(k) = 1 + (-1)^k/(3^k - 3*9^k*x/(3*3^k*x + (-1)^k/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013

Extensions

Description corrected by and more terms from Michael Somos

A034870 Even-numbered rows of Pascal's triangle.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 15, 20, 15, 6, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1
Offset: 0

Views

Author

Keywords

Comments

The sequence of row lengths of this array is [1,3,5,7,9,11,13,...]= A005408(n), n>=0.
Equals X^n * [1,0,0,0,...] where X = an infinite tridiagonal matrix with (1,1,1,...) in the main and subsubdiagonal and (2,2,2,...) in the main diagonal. X also = a triangular matrix with (1,2,1,0,0,0,...) in each column. - Gary W. Adamson, May 26 2008
a(n,m) has the following interesting combinatoric interpretation. Let s(n,m) equal the set of all base-4, n-digit numbers with n-m more 1-digits than 2-digits. For example s(2,1) = {10,01,13,31} (note that numbers like 1 are left-padded with 0's to ensure that they have 2 digits). Notice that #s(2,1) = a(2,1) with # indicating cardinality. This is true in general. a(n,m)=#s(n,m). In words, a(n,m) gives the number of n-digit, base-4 numbers with n-m more 1 digits than 2 digits. A proof is provided in the Links section. - Russell Jay Hendel, Jun 23 2015

Examples

			Triangle begins:
  1;
  1,  2,  1;
  1,  4,  6,   4,   1;
  1,  6, 15,  20,  15,   6,   1;
  1,  8, 28,  56,  70,  56,  28,   8,   1;
  1, 10, 45, 120, 210, 252, 210, 120,  45,  10,  1;
  1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
		

Crossrefs

Cf. A000302 (row sums, powers of 4), alternating row sums are 0, except for n=0 which gives 1.

Programs

  • Haskell
    a034870 n k = a034870_tabf !! n !! k
    a034870_row n = a034870_tabf !! n
    a034870_tabf = map a007318_row [0, 2 ..]
    -- Reinhard Zumkeller, Apr 19 2012, Apr 02 2011
    
  • Magma
    /* As triangle: */ [[Binomial(n,k): k in [0..n]]: n in [0.. 15 by 2]]; // Vincenzo Librandi, Jul 16 2015
    
  • Maple
    T := (n,k) -> simplify(GegenbauerC(`if`(kPeter Luschny, May 08 2016
  • Mathematica
    Flatten[Table[Binomial[n,k],{n,0,20,2},{k,0,n}]] (* Harvey P. Dale, Dec 15 2014 *)
  • Maxima
    taylor(1/(1-x*(y+1)^2),x,0,10,y,0,10); /* Vladimir Kruchinin, Nov 22 2020 */
    
  • Sage
    flatten([[binomial(2*n, k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022

Formula

T(n, m) = binomial(2*n, m), 0<= m <= 2*n, 0<=n, else 0.
G.f. for column m=2*k sequence: (x^k)*Pe(k, x)/(1-x)^(2*k+1), k>=0; for column m=2*k-1 sequence (x^k)*Po(k, x)/(1-x)^(2*k), k>=1, with the row polynomials Pe(k, x) := sum(A091042(k, m)*x^m, m=0..k) and Po(k, x) := 2*sum(A091044(k, m)*x^m, m=0..k-1); see also triangle A091043.
From Paul D. Hanna, Apr 18 2012: (Start)
Let A(x) be the g.f. of the flattened sequence, then:
G.f.: A(x) = Sum_{n>=0} x^(n^2) * (1+x)^(2*n).
G.f.: A(x) = Sum_{n>=0} x^n*(1+x)^(2*n) * Product_{k=1..n} (1 - (1+x)^2*x^(4*k-3)) / (1 - (1+x)^2*x^(4*k-1)).
G.f.: A(x) = 1/(1 - x*(1+x)^2/(1 + x*(1-x^2)*(1+x)^2/(1 - x^5*(1+x)^2/(1 + x^3*(1-x^4)*(1+x)^2/(1 - x^9*(1+x)^2/(1 + x^5*(1-x^6)*(1+x)^2/(1 - x^13*(1+x)^2/(1 + x^7*(1-x^8)*(1+x)^2/(1 - ...))))))))), a continued fraction.
(End)
From Peter Bala, Jul 14 2015: (Start)
Denote this array by P. Then P * transpose(P) is the square array ( binomial(2*n + 2*k, 2*k) )n,k>=0, which, read by antidiagonals, is A086645.
Transpose(P) is a generalized Riordan array (1, (1 + x)^2) as defined in the Bala link.
Let p(x) = (1 + x)^2. P^2 gives the coefficients in the expansion of the polynomials ( p(p(x)) )^n, P^3 gives the coefficients in the expansion of the polynomials ( p(p(p(x))) )^n and so on.
Row sums are 2^(2*n); row sums of P^2 are 5^(2*n), row sums of P^3 are 26^(2*n). In general, the row sums of P^k, k = 0,1,2,..., are equal to A003095(k)^(2*n).
The signed version of this array ( (-1)^k*binomial(2*n,k) )n,k>=0 is a left-inverse for A034839.
A034839 * P = A080928. (End)
T(n, k) = GegenbauerC(m, -n, -1) where m = k if kPeter Luschny, May 08 2016
G.f.: 1/(1-x*(y+1)^2). - Vladimir Kruchinin, Nov 22 2020

A080929 Sequence associated with a(n) = 2*a(n-1) + k*(k+2)*a(n-2).

Original entry on oeis.org

1, 3, 12, 40, 120, 336, 896, 2304, 5760, 14080, 33792, 79872, 186368, 430080, 983040, 2228224, 5013504, 11206656, 24903680, 55050240, 121110528, 265289728, 578813952, 1258291200, 2726297600, 5888802816, 12683575296, 27246198784
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Comments

The third column of number triangle A080928.

Crossrefs

Essentially the same as A052482.

Programs

  • GAP
    Concatenation([1], List([1..30], n-> 2^(n-1)*Binomial(n+2,2))); # G. C. Greubel, Jul 23 2019
  • Magma
    [n eq 0 select 1 else (n+1)*(n+2)*2^(n-2): n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
    
  • Maple
    [seq (ceil(binomial(n+2,2)*2^(n-1)),n=0..30)]; # Zerinvary Lajos, Nov 01 2006
  • Mathematica
    CoefficientList[Series[(1-x)(1-2x+4x^2)/(1-2x)^3, {x,0,30}], x] (* Michael De Vlieger, Sep 21 2017 *)
    Join[{1}, LinearRecurrence[{6,-12,8}, {3,12,40}, 30]] (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    vector(30, n, n--; if(n==0,1, 2^(n-1)*binomial(n+2,2) )) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    [1]+[2^(n-1)*binomial(n+2,2) for n in (1..30)] # G. C. Greubel, Jul 23 2019
    

Formula

G.f.: (1-x)*(1-2*x+4*x^2)/(1-2*x)^3.
For n>0, a(n) = (n+1)*(n+2)*2^(n-2). - Ralf Stephan, Jan 16 2004
a(n) = Sum_{k=0..n} Sum_{i=0..n} (k+1)*binomial(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 7 - 8*log(2).
Sum_{n>=0} (-1)^n/a(n) = 24*log(3/2) - 9. (End)

A080951 Sequence associated with recurrence a(n) = 2*a(n-1) + k*(k+2)*a(n-2).

Original entry on oeis.org

1, 5, 30, 140, 560, 2016, 6720, 21120, 63360, 183040, 512512, 1397760, 3727360, 9748480, 25067520, 63504384, 158760960, 392232960, 958791680, 2321285120, 5571084288, 13264486400, 31352422400, 73610035200, 171756748800, 398475657216, 919559208960, 2111580405760
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Comments

Fifth column of triangle A080928.

Crossrefs

Programs

  • GAP
    a:=[5,30,140,560,2016];; for n in [6..30] do a[n]:=10*a[n-1] -40*a[n-2]+80*a[n-3]-80*a[n-4]+32*a[n-5]; od; Concatenation([1], a); # G. C. Greubel, Jul 23 2019
  • Magma
    [(Ceiling(Binomial(n+4, 4)*2^(n-1))) : n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
    
  • Maple
    [seq( ceil(binomial(n+4,4)*2^(n-1)),n=0..30)]; # Zerinvary Lajos, Nov 01 2006
  • Mathematica
    Join[{1}, LinearRecurrence[{10,-40,80,-80,32}, {5,30,140,560,2016}, 30]] (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)*(1-4*x+16*x^2-24*x^3 +16*x^4)/(1 -2*x)^5) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    ((1-x)*(1-4*x+16*x^2-24*x^3+16*x^4)/(1-2*x)^5).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

G.f.: (1-x)*(1 - 4*x + 16*x^2 - 24*x^3 + 16*x^4)/(1-2*x)^5.
a(n) = ceiling(binomial(n+4,4)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 37/3 - 16*log(2).
Sum_{n>=0} (-1)^n/a(n) = 432*log(3/2) - 523/3. (End)
E.g.f.: (3 + exp(2*x)*(3 + 24*x + 36*x^2 + 16*x^3 + 2*x^4))/6. - Stefano Spezia, Sep 02 2025

A119468 Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(n,2j)*binomial(n-2j,k).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 16, 12, 4, 1, 16, 40, 40, 20, 5, 1, 32, 96, 120, 80, 30, 6, 1, 64, 224, 336, 280, 140, 42, 7, 1, 128, 512, 896, 896, 560, 224, 56, 8, 1, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1
Offset: 0

Views

Author

Paul Barry, May 21 2006

Keywords

Comments

Product of Pascal's triangle A007318 and A119467. Row sums are A007051. Diagonal sums are A113225.
Variant of A080928, A115068 and A082137. - R. J. Mathar, Feb 09 2010
Matrix inverse of the Euler tangent triangle A081733. - Peter Luschny, Jul 18 2012
Central column: T(2*n,n) = A069723(n). - Peter Luschny, Jul 22 2012
Subtriangle of the triangle in A198792. - Philippe Deléham, Nov 10 2013

Examples

			Triangle begins
    1;
    1,    1;
    2,    2,    1;
    4,    6,    3,    1;
    8,   16,   12,    4,    1;
   16,   40,   40,   20,    5,    1;
   32,   96,  120,   80,   30,    6,    1;
   64,  224,  336,  280,  140,   42,    7,   1;
  128,  512,  896,  896,  560,  224,   56,   8,  1;
  256, 1152, 2304, 2688, 2016, 1008,  336,  72,  9,  1;
  512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1;
		

Crossrefs

A082137 read as triangle with rows reversed.

Programs

  • Maple
    A119468_row := proc(n) local s,t,k;
      s := series(exp(z*x)/(1-tanh(x)),x,n+2);
      t := factorial(n)*coeff(s,x,n); seq(coeff(t,z,k), k=(0..n)) end:
    for n from 0 to 7 do A119468_row(n) od; # Peter Luschny, Aug 01 2012
    # Alternatively:
    T := (n, k) -> 2^(n-k-1+0^(n-k))*binomial(n,k):
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Nov 10 2017
  • Mathematica
    A[k_] := Table[If[m < n, 1, -1], {m, k}, {n, k}]; a = Join[{{1}}, Table[(-1)^n*CoefficientList[CharacteristicPolynomial[A[n], x], x], {n, 1, 10}]]; Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Jan 25 2009 *)
    Table[Sum[Binomial[n,2j]Binomial[n-2j,k],{j,0,n-k}],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 14 2022 *)
  • Sage
    R = PolynomialRing(QQ, 'x')
    def p(n,x) :
      return 1 if n==0 else add((-1)^n*binomial(n,k)*(x^(n-k)-1) for k in range(n))
    def A119468_row(n):
        x = R.gen()
        return [abs(cf) for cf in list((p(n,x-1)-p(n,x+1))/2+x^n)]
    for n in (0..8) : print(A119468_row(n)) # Peter Luschny, Jul 22 2012

Formula

G.f.: (1 - x - xy)/(1 - 2x - 2x*y + 2x^2*y + x^2*y^2).
Number triangle T(n,k) = Sum_{j=0..n} binomial(n,j)*binomial(j,k)*(1+(-1)^(j-k))/2.
Define matrix: A(n,m,k) = If[m < n, 1, -1];
p(x,k) = CharacteristicPolynomial[A[n,m,k],x]; then t(n,m) = coefficients(p(x,n)). - Roger L. Bagula and Gary W. Adamson, Jan 25 2009
E.g.f.: exp(x*z)/(1-tanh(x)). - Peter Luschny, Aug 01 2012
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) - T(n-2,k-2) for n >= 2, T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 10 2013
E.g.f.: [(e^(2t)+1)/2] e^(tx) = e^(P.(x)t), so this is an Appell sequence with lowering operator D = d/dx and raising operator R = x + 2/(e^(-2D)+1), i.e., D P_n(x) = n P_{n-1}(x) and R p_n(x) = P_{n+1}(x) where P_n(x) = [(x+2)^n + x^n]/2. Also, (P.(x)+y)^n = P_n(x+y), umbrally. R = x + 1 + D - 2 D^3/3! + ... contains the e.g.f.(D) mod signs of A009006 and A155585 and signed, aerated A000182, the zag numbers, so the unsigned differential component 2/[e^(2D)+1] = 2 Sum_{n >= 0} Eta(-n) (-2D)^n/n!, where Eta(s) is the Dirichlet eta function, and 2 *(-2)^n Eta(-n) = (-1)^n (2^(n+1)-4^(n+1)) Zeta(-n) = (2^(n+1)-4^(n+1)) B(n+1)/(n+1) with Zeta(s), the Riemann zeta function, and B(n), the Bernoulli numbers. The polynomials PI_n(x) of A081733 are the umbral compositional inverses of this sequence, i.e., P_n(PI.(x)) = x^n = PI_n(P.(x)) under umbral composition. Aside from the signs and the main diagonals, multiplying this triangle by 2 gives the face-vectors of the hypercubes A038207. - Tom Copeland, Sep 27 2015
T(n,k) = 2^(n-k-1+0^(n-k))*binomial(n, k). - Peter Luschny, Nov 10 2017

A080930 a(n) = 2^(n-3)*(n+2)*(n+3)*(n+4)/3.

Original entry on oeis.org

1, 5, 20, 70, 224, 672, 1920, 5280, 14080, 36608, 93184, 232960, 573440, 1392640, 3342336, 7938048, 18677760, 43581440, 100925440, 232128512, 530579456, 1205862400, 2726297600, 6134169600, 13740539904, 30651973632, 68115496960
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Comments

Old definition was "Sequence associated with recurrence a(n)=2*a(n-1)+k(k+2)*a(n-2)". See the first comment in A080928.
The fourth column of triangle A080928 (after 0) is 4*a(n).

Crossrefs

Cf. A080928.

Programs

  • GAP
    List([0..30], n-> 2^(n-2)*Binomial(n+4,3)); # G. C. Greubel, Aug 27 2019
  • Magma
    [Binomial(n+3,3)*2^(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
    
  • Maple
    [seq (binomial(n+3,3)*2^(n-3),n=1..27)]; # Zerinvary Lajos, Oct 29 2006
  • Mathematica
    CoefficientList[Series[(1-x)(1 -2x +2x^2)/(1-2x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{8, -24, 32, -16}, {1, 5, 20, 70}, 30] (* Bruno Berselli, Aug 06 2013 *)
  • PARI
    a(n)=2^(n-3)*(n+2)*(n+3)*(n+4)/3 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [2^(n-2)*binomial(n+4,3) for n in (0..30)] # G. C. Greubel, Aug 27 2019
    

Formula

G.f.: (1-x)*(1-2*x+2*x^2)/(1-2*x)^4 = (1-3*x+4*x^2-2*x^3)/(1-2*x)^4.
a(n) = binomial(n+3,3)*2^(n-3), n>0. - Zerinvary Lajos, Oct 29 2006
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n>3, a(0)=1, a(1)=5, a(2)=20, a(3)=70. - Bruno Berselli, Aug 06 2013
E.g.f.: (3 +9*x +6*x^2 +x^3)*exp(2*x)/3. - G. C. Greubel, Aug 27 2019
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 48*log(2) - 32.
Sum_{n>=0} (-1)^n/a(n) = 176 - 432*log(3/2). (End)

Extensions

Edited by Bruno Berselli, Aug 06 2013

A080952 a(n) = 2^(n-4)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)/15.

Original entry on oeis.org

3, 21, 112, 504, 2016, 7392, 25344, 82368, 256256, 768768, 2236416, 6336512, 17547264, 47628288, 127008768, 333398016, 862912512, 2205220864, 5571084288, 13927710720, 34487664640, 84651540480, 206108098560, 498094571520
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Comments

Old definition was "Sequence associated with recurrence a(n) = 2*a(n-1) + k*(k+2)*a(n-2)". See the first comment in A080928.
The sixth column of A080928 (after 0) is 2*a(n).

Crossrefs

Programs

  • Magma
    I:=[3,21,112,504,2016,7392]; [n le 6 select I[n] else 12*Self(n-1)-60*Self(n-2)+160*Self(n-3)-240*Self(n-4)+192*Self(n-5)-64*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
    
  • Mathematica
    LinearRecurrence[{12, -60, 160, -240, 192, -64}, {3, 21, 112, 504, 2016, 7392}, 30] (* or *) CoefficientList[Series[(1-x) (3 - 12 x + 28 x^2 - 32 x^3 + 16 x^4)/ (1 - 2 x)^6, {x, 0, 30}], x] (* Harvey P. Dale, Jun 11 2011 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x)*(4*x^2-2*x+1)*(4*x^2-6*x+3)/(1-2*x)^6) \\ G. C. Greubel, Nov 24 2017

Formula

G.f.: (1-x)*(4*x^2-2*x+1)*(4*x^2-6*x+3)/(1-2x)^6.
a(n) = 12*a(n-1) - 60*a(n-2) + 160*a(n-3) - 240*a(n-4) + 192*a(n-5) - 64*a(n-6), n>=6. - Harvey P. Dale, Jun 11 2011
Let b(n) = A000292(n+1)+n+1+A000389(n+5) = (n+1)*(n^4+14*n^3+91*n^2+254*n+360)/120 = 3, 12, 34, 80, 166, 314,.. Then a(n) = 2^n*b(n) - 2^(n-1)*b(n-1). - R. J. Mathar, Jun 11 2011
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 40*log(2) - 82/3.
Sum_{n>=0} (-1)^n/a(n) = 1314 - 3240*log(3/2). (End)

Extensions

Replaced the previous definition with the closed form from Bruno Berselli, Aug 06 2013
Showing 1-8 of 8 results.