A034839
Triangular array formed by taking every other term of each row of Pascal's triangle.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 6, 1, 1, 10, 5, 1, 15, 15, 1, 1, 21, 35, 7, 1, 28, 70, 28, 1, 1, 36, 126, 84, 9, 1, 45, 210, 210, 45, 1, 1, 55, 330, 462, 165, 11, 1, 66, 495, 924, 495, 66, 1, 1, 78, 715, 1716, 1287, 286, 13
Offset: 0
Triangular array begins:
1
1
1 1
1 3
1 6 1
1 10 5
1 15 15 1
...
cosh(4x) = (cosh x)^5 + 10 (cosh x)^3 (sinh x)^2 + 5 (cosh x) (sinh x)^4, so row 4 is (1,10,5). See Mathematica program. - _Clark Kimberling_, Aug 03 2024
- G. C. Greubel, Table of n, a(n) for the first 101 rows, flattened
- M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- H. Chan, S. Cooper, and P. Toh, The 26th power of Dedekind's eta function Advances in Mathematics, 207 (2006) 532-543.
- Tom Copeland, Juggling Zeros in the Matrix: Example II, 2020.
- C. Corsani, D. Merlini, and R. Sprugnoli, Left-inversion of combinatorial sums, Discrete Mathematics, 180 (1998) 107-122.
- Tian Han and Sergey Kitaev, Joint distributions of statistics over permutations avoiding two patterns of length 3, arXiv:2311.02974 [math.CO], 2023.
- S.-M. Ma, On some binomial coefficients related to the evaluation of tan(nx), arXiv preprint arXiv:1205.0735 [math.CO], 2012. - From _N. J. A. Sloane_, Oct 13 2012
- K. Oliver and H. Prodinger, The continued fraction expansion of Gauss' hypergeometric function and a new application to the tangent function, Transactions of the Royal Society of South Africa, Vol. 76 (2012), 151-154, [DOI]; [PDF]. - From _N. J. A. Sloane_, Jan 03 2013
- Eric Weisstein's World of Mathematics, Tangent [From _Eric W. Weisstein_, Oct 18 2008]
-
/* As a triangle */ [[Binomial(n,2*k):k in [0..Floor(n/2)]] : n in [0..10]]; // G. C. Greubel, Feb 23 2018
-
for n from 0 to 13 do seq(binomial(n,2*k),k=0..floor(n/2)) od;# yields sequence in triangular form; # Emeric Deutsch, Mar 30 2005
-
u[1, x_] := 1; v[1, x_] := 1; z = 12;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu] (* A034839 as a triangle *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv] (* A034867 as a triangle *)
(* Clark Kimberling, Feb 18 2012 *)
Table[Binomial[n, k], {n, 0, 13}, {k, 0, Floor[n, 2], 2}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
(* The triangle gives coefficients for cosh(nx) as a linear combination of products (cosh(x)^h)*(sinh(x)^k) *)
Column[Table[TrigExpand[Cosh[n x]], {n, 0, 10}]]
(* Clark Kimberling, Aug 03 2024 *)
-
for(n=0,15, for(k=0,floor(n/2), print1(binomial(n, 2*k), ", "))) \\ G. C. Greubel, Feb 23 2018
A046717
a(n) = 2*a(n-1) + 3*a(n-2), a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165, 3812798742493, 11438396227481
Offset: 0
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- P. D. Jarvis and J. G. Sumner, Matrix group structure and Markov invariants in the strand symmetric phylogenetic substitution model, arXiv preprint arXiv:1307.5574 [q-bio.PE], 2013.
- Index entries for linear recurrences with constant coefficients, signature (2,3).
The first difference sequence of
A015518.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A002605,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
-
[n le 2 select 1 else 2*Self(n-1)+3*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
-
[(3^n + (-1)^n)/2: n in [0..30]]; // G. C. Greubel, Jan 07 2018
-
a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2] od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
seq(denom(((-2)^(2*n)+6^(2*n))/((-2)^n+6^n)),n=0..26)
-
Table[(3^n + (-1)^n)/2, {n, 0, 30}] (* Artur Jasinski, Dec 10 2006 *)
CoefficientList[ Series[(1 - x)/(1 - 2x - 3x^2), {x, 0, 30}], x] (* Robert G. Wilson v, Apr 04 2011 *)
Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Apr 04 2011 *)
-
{a(n) = (3^n+(-1)^n)/2};
for(n=0,30, print1(a(n), ", ")) /* modified by G. C. Greubel, Jan 07 2018 */
-
x='x+O('x^30); Vec((1-x)/((1+x)*(1-3*x))) \\ G. C. Greubel, Jan 07 2018
-
[lucas_number2(n,2,-3)/2 for n in range(0, 27)] # Zerinvary Lajos, Apr 30 2009
A034870
Even-numbered rows of Pascal's triangle.
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 15, 20, 15, 6, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1
Offset: 0
Triangle begins:
1;
1, 2, 1;
1, 4, 6, 4, 1;
1, 6, 15, 20, 15, 6, 1;
1, 8, 28, 56, 70, 56, 28, 8, 1;
1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1;
1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
- Peter Bala, Notes on generalized Riordan arrays
- E. H. M. Brietzke, An identity of Andrews and a new method for the Riordan array proof of combinatorial identities, Discrete Math., 308 (2008), 4246-4262.
- Russell Jay Hendel, Proof that a(n,m) gives the number of n-digit, base-4 numbers with n-m more 1-digits than 2-digits.
- Wolfdieter Lang, First 9 rows.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Index entries for triangles and arrays related to Pascal's triangle
Cf.
A000302 (row sums, powers of 4), alternating row sums are 0, except for n=0 which gives 1.
-
a034870 n k = a034870_tabf !! n !! k
a034870_row n = a034870_tabf !! n
a034870_tabf = map a007318_row [0, 2 ..]
-- Reinhard Zumkeller, Apr 19 2012, Apr 02 2011
-
/* As triangle: */ [[Binomial(n,k): k in [0..n]]: n in [0.. 15 by 2]]; // Vincenzo Librandi, Jul 16 2015
-
T := (n,k) -> simplify(GegenbauerC(`if`(kPeter Luschny, May 08 2016
-
Flatten[Table[Binomial[n,k],{n,0,20,2},{k,0,n}]] (* Harvey P. Dale, Dec 15 2014 *)
-
taylor(1/(1-x*(y+1)^2),x,0,10,y,0,10); /* Vladimir Kruchinin, Nov 22 2020 */
-
flatten([[binomial(2*n, k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
A080929
Sequence associated with a(n) = 2*a(n-1) + k*(k+2)*a(n-2).
Original entry on oeis.org
1, 3, 12, 40, 120, 336, 896, 2304, 5760, 14080, 33792, 79872, 186368, 430080, 983040, 2228224, 5013504, 11206656, 24903680, 55050240, 121110528, 265289728, 578813952, 1258291200, 2726297600, 5888802816, 12683575296, 27246198784
Offset: 0
-
Concatenation([1], List([1..30], n-> 2^(n-1)*Binomial(n+2,2))); # G. C. Greubel, Jul 23 2019
-
[n eq 0 select 1 else (n+1)*(n+2)*2^(n-2): n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
-
[seq (ceil(binomial(n+2,2)*2^(n-1)),n=0..30)]; # Zerinvary Lajos, Nov 01 2006
-
CoefficientList[Series[(1-x)(1-2x+4x^2)/(1-2x)^3, {x,0,30}], x] (* Michael De Vlieger, Sep 21 2017 *)
Join[{1}, LinearRecurrence[{6,-12,8}, {3,12,40}, 30]] (* G. C. Greubel, Jul 23 2019 *)
-
vector(30, n, n--; if(n==0,1, 2^(n-1)*binomial(n+2,2) )) \\ G. C. Greubel, Jul 23 2019
-
[1]+[2^(n-1)*binomial(n+2,2) for n in (1..30)] # G. C. Greubel, Jul 23 2019
A080951
Sequence associated with recurrence a(n) = 2*a(n-1) + k*(k+2)*a(n-2).
Original entry on oeis.org
1, 5, 30, 140, 560, 2016, 6720, 21120, 63360, 183040, 512512, 1397760, 3727360, 9748480, 25067520, 63504384, 158760960, 392232960, 958791680, 2321285120, 5571084288, 13264486400, 31352422400, 73610035200, 171756748800, 398475657216, 919559208960, 2111580405760
Offset: 0
-
a:=[5,30,140,560,2016];; for n in [6..30] do a[n]:=10*a[n-1] -40*a[n-2]+80*a[n-3]-80*a[n-4]+32*a[n-5]; od; Concatenation([1], a); # G. C. Greubel, Jul 23 2019
-
[(Ceiling(Binomial(n+4, 4)*2^(n-1))) : n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
-
[seq( ceil(binomial(n+4,4)*2^(n-1)),n=0..30)]; # Zerinvary Lajos, Nov 01 2006
-
Join[{1}, LinearRecurrence[{10,-40,80,-80,32}, {5,30,140,560,2016}, 30]] (* G. C. Greubel, Jul 23 2019 *)
-
my(x='x+O('x^30)); Vec((1-x)*(1-4*x+16*x^2-24*x^3 +16*x^4)/(1 -2*x)^5) \\ G. C. Greubel, Jul 23 2019
-
((1-x)*(1-4*x+16*x^2-24*x^3+16*x^4)/(1-2*x)^5).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
A119468
Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(n,2j)*binomial(n-2j,k).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 16, 12, 4, 1, 16, 40, 40, 20, 5, 1, 32, 96, 120, 80, 30, 6, 1, 64, 224, 336, 280, 140, 42, 7, 1, 128, 512, 896, 896, 560, 224, 56, 8, 1, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1
Offset: 0
Triangle begins
1;
1, 1;
2, 2, 1;
4, 6, 3, 1;
8, 16, 12, 4, 1;
16, 40, 40, 20, 5, 1;
32, 96, 120, 80, 30, 6, 1;
64, 224, 336, 280, 140, 42, 7, 1;
128, 512, 896, 896, 560, 224, 56, 8, 1;
256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1;
512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1;
A082137 read as triangle with rows reversed.
-
A119468_row := proc(n) local s,t,k;
s := series(exp(z*x)/(1-tanh(x)),x,n+2);
t := factorial(n)*coeff(s,x,n); seq(coeff(t,z,k), k=(0..n)) end:
for n from 0 to 7 do A119468_row(n) od; # Peter Luschny, Aug 01 2012
# Alternatively:
T := (n, k) -> 2^(n-k-1+0^(n-k))*binomial(n,k):
for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Nov 10 2017
-
A[k_] := Table[If[m < n, 1, -1], {m, k}, {n, k}]; a = Join[{{1}}, Table[(-1)^n*CoefficientList[CharacteristicPolynomial[A[n], x], x], {n, 1, 10}]]; Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Jan 25 2009 *)
Table[Sum[Binomial[n,2j]Binomial[n-2j,k],{j,0,n-k}],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 14 2022 *)
-
R = PolynomialRing(QQ, 'x')
def p(n,x) :
return 1 if n==0 else add((-1)^n*binomial(n,k)*(x^(n-k)-1) for k in range(n))
def A119468_row(n):
x = R.gen()
return [abs(cf) for cf in list((p(n,x-1)-p(n,x+1))/2+x^n)]
for n in (0..8) : print(A119468_row(n)) # Peter Luschny, Jul 22 2012
A080930
a(n) = 2^(n-3)*(n+2)*(n+3)*(n+4)/3.
Original entry on oeis.org
1, 5, 20, 70, 224, 672, 1920, 5280, 14080, 36608, 93184, 232960, 573440, 1392640, 3342336, 7938048, 18677760, 43581440, 100925440, 232128512, 530579456, 1205862400, 2726297600, 6134169600, 13740539904, 30651973632, 68115496960
Offset: 0
-
List([0..30], n-> 2^(n-2)*Binomial(n+4,3)); # G. C. Greubel, Aug 27 2019
-
[Binomial(n+3,3)*2^(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
-
[seq (binomial(n+3,3)*2^(n-3),n=1..27)]; # Zerinvary Lajos, Oct 29 2006
-
CoefficientList[Series[(1-x)(1 -2x +2x^2)/(1-2x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{8, -24, 32, -16}, {1, 5, 20, 70}, 30] (* Bruno Berselli, Aug 06 2013 *)
-
a(n)=2^(n-3)*(n+2)*(n+3)*(n+4)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
[2^(n-2)*binomial(n+4,3) for n in (0..30)] # G. C. Greubel, Aug 27 2019
A080952
a(n) = 2^(n-4)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)/15.
Original entry on oeis.org
3, 21, 112, 504, 2016, 7392, 25344, 82368, 256256, 768768, 2236416, 6336512, 17547264, 47628288, 127008768, 333398016, 862912512, 2205220864, 5571084288, 13927710720, 34487664640, 84651540480, 206108098560, 498094571520
Offset: 0
-
I:=[3,21,112,504,2016,7392]; [n le 6 select I[n] else 12*Self(n-1)-60*Self(n-2)+160*Self(n-3)-240*Self(n-4)+192*Self(n-5)-64*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
-
LinearRecurrence[{12, -60, 160, -240, 192, -64}, {3, 21, 112, 504, 2016, 7392}, 30] (* or *) CoefficientList[Series[(1-x) (3 - 12 x + 28 x^2 - 32 x^3 + 16 x^4)/ (1 - 2 x)^6, {x, 0, 30}], x] (* Harvey P. Dale, Jun 11 2011 *)
-
my(x='x+O('x^50)); Vec((1-x)*(4*x^2-2*x+1)*(4*x^2-6*x+3)/(1-2*x)^6) \\ G. C. Greubel, Nov 24 2017
Replaced the previous definition with the closed form from
Bruno Berselli, Aug 06 2013
Showing 1-8 of 8 results.
Comments