cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A116607 Sum of the divisors of n which are not divisible by 9.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 4, 18, 12, 28, 14, 24, 24, 31, 18, 12, 20, 42, 32, 36, 24, 60, 31, 42, 4, 56, 30, 72, 32, 63, 48, 54, 48, 28, 38, 60, 56, 90, 42, 96, 44, 84, 24, 72, 48, 124, 57, 93, 72, 98, 54, 12, 72, 120, 80, 90, 60, 168, 62, 96, 32, 127, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Michael Somos, Feb 19 2006

Keywords

Examples

			q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 15*q^8 + 4*q^9 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 475 Entry 7(i).

Crossrefs

A096726(n) = 3*a(n) if n>0.

Programs

  • Mathematica
    With[{c=9Range[20]},Table[Total[Complement[Divisors[i],c]],{i,80}]] (* Harvey P. Dale, Dec 19 2010 *)
    Drop[CoefficientList[Series[Sum[k * x^k /(1 - x^k) - 9*k * x^(9*k) / (1 - x^(9*k)) , {k, 1, 100}], {x, 0, 100}], x], 1] (* Indranil Ghosh, Mar 25 2017 *)
    f[p_, e_] := If[p == 3, 4, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    {a(n) = if( n<1, 0, sigma(n) - if( n%9==0, 9 * sigma(n/9)))}
    
  • PARI
    {a(n) = polcoeff( sum( k=1, n, k * (x^k /(1 - x^k) - 9 * x^(9*k) /(1 - x^(9*k))), x * O(x^n)), n)}
    
  • PARI
    q='q+O('q^66); Vec( (eta(q^3)^10/(eta(q)*eta(q^9))^3 - 1) /3 ) \\ Joerg Arndt, Mar 25 2017
    
  • Python
    from sympy import divisors
    print([sum(i for i in divisors(n) if i%9) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017

Formula

Expansion of (eta(q^3)^10 / (eta(q) eta(q^9))^3 - 1) / 3 in powers of q.
a(n) is multiplicative with a(3^e) = 4 if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f.: Sum_{k>0} k * x^k /(1 - x^k) - 9*k * x^(9*k) / (1 - x^(9*k)).
L.g.f.: log(Product_{k>=1} (1 - x^(9*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
Sum_{k=1..n} a(k) ~ (2*Pi^2/27) * n^2. - Amiram Eldar, Oct 04 2022

A092877 Expansion of (eta(q^4) / eta(q))^8 in powers of q.

Original entry on oeis.org

1, 8, 44, 192, 718, 2400, 7352, 20992, 56549, 145008, 356388, 844032, 1934534, 4306368, 9337704, 19771392, 40965362, 83207976, 165944732, 325393024, 628092832, 1194744096, 2241688744, 4152367104, 7599231223, 13749863984
Offset: 1

Views

Author

Michael Somos, Mar 19 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 8*q^2 + 44*q^3 + 192*q^4 + 718*q^5 + 2400*q^6 + 7352*q^7 + 20992*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ -InverseEllipticNomeQ[ -x] / 16, {x, 0, n}]]; (* Michael Somos, Jun 13 2011 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ With[ {lambda = ModularLambda[ Log[x] / ( Pi I)]}, lambda / (16 * (1 - lambda))], {x, 0, n}]]; (* Michael Somos, Jun 13 2011 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^4] / QPochhammer[ q])^8, {q, 0, n}]; (* Michael Somos, Aug 09 2015 *)
    a[1] = 1; a[n_] := a[n] = (8/(n-1))*Sum[DivisorSum[k, Identity, Mod[#, 4] != 0&]*a[n-k], {k, 1, n-1}]; Array[a, 26] (* Jean-François Alcover, Mar 01 2018, after Seiichi Manyama *)
    eta[q_]:= q^(1/6) QPochhammer[q]; a[n_]:=SeriesCoefficient[(eta[q^4] / eta[q])^8, {q, 0, n}]; Table[a[n], {n, 4, 35}] (* Vincenzo Librandi, Oct 18 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( x * prod(k=1, (n+1)\2, (1 + x^(2*k)) / (1 - x^(2*k-1)), 1 + x * O(x^n))^8, n))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^8, n))};

Formula

Expansion of q * (psi(-q) / phi(-q))^8 = q * (psi(q^2) / psi(-q))^8 = q * (psi(q) / phi(-q^2))^8 = q * (psi(q^2) / phi(-q))^4 = q * (chi(q) / chi(-q^2)^2)^8 = q / (chi(-q) * chi(-q^2))^8 = q / (chi(q) * chi(-q)^2)^8 = q * (f(-q^4) / f(-q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jun 13 2011
Euler transform of period 4 sequence [ 8, 8, 8, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 16*u*v - 16*v^2 - 256*u*v^2.
G.f.: x * (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^8.
G.f.: theta_2^4 / (16*theta_4^4) = lambda / (16 * (1 - lambda)).
G.f.: exp( Integral theta_3(x)^4/x dx ). - Paul D. Hanna, May 03 2010
a(n) = (-1)^n * A005798(n).
a(2*n) = 8 * A014103(n). - Michael Somos, Aug 09 2015
Convolution inverse of A124972, 8th power of A001935, 4th power of A001936, square of A093160. - Michael Somos, Aug 09 2015
a(n) ~ exp(2*Pi*sqrt(n))/(512*n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (8/(n-1))*Sum_{k=1..n-1} A046897(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017

A278085 1/4 of the number of primitive integral quadruples with sum = 3*n and sum of squares = 3*n^2.

Original entry on oeis.org

1, 1, 3, 0, 6, 3, 6, 0, 9, 6, 12, 0, 12, 6, 18, 0, 18, 9, 18, 0, 18, 12, 24, 0, 30, 12, 27, 0, 30, 18, 30, 0, 36, 18, 36, 0, 36, 18, 36, 0, 42, 18, 42, 0, 54, 24, 48, 0, 42, 30, 54, 0, 54, 27, 72, 0, 54, 30, 60, 0, 60, 30, 54, 0, 72, 36, 66, 0, 72, 36, 72, 0, 72, 36, 90, 0, 72, 36, 78, 0, 81, 42, 84, 0, 108, 42, 90, 0, 90, 54, 72, 0, 90, 48, 108, 0, 96, 42, 108, 0
Offset: 1

Views

Author

Colin Mallows, Nov 14 2016

Keywords

Comments

Conjecture: a(n) is multiplicative, with a(2) = 1, a(2^k) = 0 for k>=2, and for k >= 1 and p an odd prime, a(p^k) = p^(k-1)*a(p), with a(p) = p+1 for p == 5 (mod 6), a(p) = p-1 for p=1 (mod 6), and a(3) = 3. It would be nice to have a proof of this. [See A354766 for additional conjectures. - N. J. A. Sloane, Jun 19 2022]
This is also 1/4 of the number of primitive integral quadruples with sum = n and sum of squares = n^2. See A354766, A354777, A354778 for the total number of solutions. - N. J. A. Sloane, Jun 27 2022

Examples

			For the case r = s = 3, we have 4*a(3) = 12 because of (1,1,3,4) (12 permutations). Indeed, 1 + 1 + 3 + 4 = 9 = 3*3 and 1^2 + 1^2 + 3^2 + 4^2 = 27 = 3*3^2.
For the case r = s = 1, we have again 4*a(3) = 12 because of (3,3,3,3) - (1,1,3,4) = (2,2,0,-1) (12 permutations). Indeed, 2 + 2 + 0 + (-1) = 3 = 1*3 and 2^2 + 2^2 + 0^2 + (-1)^2 = 9 = 1*3^2.
		

Crossrefs

Programs

  • Mathematica
    sqrtint = Floor[Sqrt[#]]&;
    q[r_, s_, g_] := Module[{d = 2 s - r^2, h}, If[d <= 0, d == 0 && Mod[r, 2] == 0 && GCD[g, r/2] == 1, h = Sqrt[d]; If[IntegerQ[h] && Mod[r+h, 2] == 0 && GCD[g, GCD[(r+h)/2, (r-h)/2]]==1, 2, 0]]] /. {True -> 1, False -> 0};
    a[n_] := Module[{s}, s = 3 n^2; Sum[q[3 n - i - j, s - i^2 - j^2, GCD[i, j]] , {i, -sqrtint[s], sqrtint[s]}, {j, -sqrtint[s - i^2], sqrtint[s - i^2]}]/4];
    Table[an = a[n]; Print[n, " ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Sep 20 2020, after Andrew Howroyd *)
  • PARI
    q(r, s, g)={my(d=2*s - r^2); if(d<=0, d==0 && r%2==0 && gcd(g, r/2)==1, my(h); if(issquare(d, &h) && (r+h)%2==0 && gcd(g, gcd((r+h)/2, (r-h)/2))==1, 2, 0))}
    a(n)={my(s=3*n^2); sum(i=-sqrtint(s), sqrtint(s), sum(j=-sqrtint(s-i^2), sqrtint(s-i^2), q(3*n-i-j, s-i^2-j^2, gcd(i,j)) ))/4} \\ Andrew Howroyd, Aug 02 2018

Extensions

Example edited by Petros Hadjicostas, Apr 21 2020

A069733 Number of divisors d of n such that d or n/d is odd. Number of non-orientable coverings of the Klein bottle with n lists.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 3, 4, 2, 4, 2, 4, 4, 2, 2, 6, 2, 4, 4, 4, 2, 4, 3, 4, 4, 4, 2, 8, 2, 2, 4, 4, 4, 6, 2, 4, 4, 4, 2, 8, 2, 4, 6, 4, 2, 4, 3, 6, 4, 4, 2, 8, 4, 4, 4, 4, 2, 8, 2, 4, 6, 2, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 6, 4, 4, 8, 2, 4, 5, 4, 2, 8, 4, 4, 4, 4, 2, 12, 4, 4, 4, 4, 4, 4, 2, 6, 6, 6, 2, 8, 2, 4
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Also number of divisors of n that are not divisible by 4. - Vladeta Jovovic, Dec 16 2002

Crossrefs

Programs

Formula

Multiplicative with a(2^e)=2 and a(p^e)=e+1 for e>0 and an odd prime p.
a(n) = d(n)-d(n/4) for 4|n and =d(n) otherwise where d(n) is the number of divisors of n (A000005).
G.f.: Sum_{m>0} x^m*(1+x^m+x^(2*m))/(1-x^(4*m)). - Vladeta Jovovic, Oct 21 2002
From Amiram Eldar, Dec 05 2022: (Start)
Dirichlet g.f.: zeta(s)^2*(1 - 1/4^s).
Sum_{k=1..n} a(k) ~ (3 * n * log(n) + (6*gamma + 2*log(2) - 3)*n)/4, where gamma is Euler's constant (A001620). [Corrected by Andrey Zabolotskiy, Apr 20 2025] (End)
a(n) = A000005(A259445(n)). - David A. Corneth, Aug 28 2023

A284326 Sum of the divisors of n that are not divisible by 6.

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 18, 12, 10, 14, 24, 24, 31, 18, 15, 20, 42, 32, 36, 24, 18, 31, 42, 40, 56, 30, 36, 32, 63, 48, 54, 48, 19, 38, 60, 56, 90, 42, 48, 44, 84, 78, 72, 48, 34, 57, 93, 72, 98, 54, 42, 72, 120, 80, 90, 60, 60, 62, 96, 104, 127, 84, 72, 68
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), this sequence (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), A284344 (k=10).

Programs

  • Mathematica
    Table[Sum[Boole[Mod[d,6]>0] d , {d, Divisors[n]}], {n,100}] (* Indranil Ghosh, Mar 25 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,6]!=0&]],{n,100}] (* Harvey P. Dale, Feb 25 2020 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, ((d%6)>0)*d),", ")) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy import divisors
    print([sum([i for i in divisors(n) if i%6]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017

Formula

G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 6*k*x^(6*k)/(1 - x^(6*k)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) ~ (5*Pi^2/72) * n^2. - Amiram Eldar, Oct 04 2022
Dirichlet g.f. (1-6^(1-s))*zeta(s-1)*zeta(s), but not multiplicative. - R. J. Mathar, May 17 2023

A284341 Sum of the divisors of n that are not divisible by 8.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 40, 56, 30, 72, 32, 7, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 120, 72, 56, 80, 90, 60, 168, 62, 96, 104, 7, 84, 144, 68
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), A284326 (k=6), A113957 (k=7), this sequence (k=8), A116607 (k=9), A284344 (k=10).

Programs

  • Mathematica
    Table[Sum[Boole[Mod[d,8]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 25 2017 *)
    Table[Total[DeleteCases[Divisors[n],?(Divisible[#,8]&)]],{n,120}] (* _Harvey P. Dale, Mar 18 2018 *)
    f[p_, e_] := If[p == 2 && e >= 3, 7, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, ((d%8)>0)*d),", ")) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy import divisors
    print([sum([i for i in divisors(n) if i%8]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017

Formula

G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 8*k*x^(8*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Mar 25 2017
Multiplicative with a(2^e) = 7 if e>=3, and a(p^e) = (p^(e + 1) - 1)/(p - 1) otherwise. - Amiram Eldar, Sep 17 2020
Sum_{k=1..n} a(k) ~ (7*Pi^2/96) * n^2. - Amiram Eldar, Oct 04 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018

A278081 a(n) is 1/12 of the number of primitive quadruples with sum = 0 and sum of squares = 2*m^2, where m = 2*n - 1.

Original entry on oeis.org

1, 2, 6, 8, 6, 10, 14, 12, 16, 18, 16, 24, 30, 18, 30, 32, 20, 48, 38, 28, 40, 42, 36, 48, 56, 32, 54, 60, 36, 58, 62, 48, 84, 66, 48, 72, 72, 60, 80, 80, 54, 82, 96, 60, 88, 112, 64, 108, 96, 60, 102, 104, 96, 106, 110, 76, 112, 144, 84, 128, 110, 80, 150, 128
Offset: 1

Views

Author

Colin Mallows, Nov 14 2016

Keywords

Comments

Set b(m) = a(n) for m = 2*n-1, and b(m) = 0 for m even.
Conjecture: b(m) is multiplicative: for k >= 1, b(2^k) = 0; for p an odd prime, b(p*k) = p^(k-1)*b(p); b(p)= p + 1 for p == (5, 7, 13, 23) (mod 24); b(p) = p-1 for p == (1, 11, 17, 19) (mod 24); and b(3) = 3. It would be nice to have a proof of this.
This sequence applies also to the case sum = 4*m and ssq = 6*m^2. Generally, there is a 1-to-1 correspondence between a quadruple (h,i,j,k) with sum = r*m and ssq = s*m^2 and another with r'*m and s'*m^2, resp., if r + r'= 4, s - r = s' - r', namely (h',i',j',k') = (m,m,m,m) - (h,i,j,k). [Edited by Petros Hadjicostas, Apr 21 2020]

Examples

			For the case r = 0 and s = 2, we have a(2) = 2 = b(3) because of (-3,-1,2,2) and (-2,-2,1,3) (12 permutations each). For example, (-3) + (-1) + 2 + 2 = 0 but (-3)^2 + (-1)^2 + 2^2 + 2^2 = 18 = 2*3^2 = 2*(2*2-1)^2 (with n = 2 and m = 3).
For the case r = 4 and s = 6, we again have a(2) = 2 = b(3) because of (3,3,3,3) - (-3,-1,2,2) = (6,4,1,1) and (3,3,3,3) - (-2,-2,1,3) = (5,5,2,0) (12 permutations each). For example, 5 + 5 + 2 + 0 = 12 = 4*3 and 5^2 + 5^2 + 2^2 + 0^2 = 54 = 6*3^2 (with n = 2 and m = 3).
		

Crossrefs

Programs

  • Mathematica
    sqrtint = Floor[Sqrt[#]]&;
    q[r_, s_, g_] := Module[{d = 2s - r^2, h}, If[d <= 0, d==0 && Mod[r, 2]==0 && GCD[g, r/2]==1, h = Sqrt[d]; If[IntegerQ[h] && Mod[r+h, 2]==0 && GCD[g, GCD[(r+h)/2, (r-h)/2]]==1, 2, 0]]] /. {True -> 1, False -> 0};
    a[n_] := Module[{m = 2n - 1, s}, s = 2m^2; Sum[q[i + j, s - i^2 - j^2, GCD[i, j]], {i, -sqrtint[s], sqrtint[s]}, {j, -sqrtint[s - i^2], sqrtint[s - i^2]}]/12];
    Table[an = a[n]; Print[n, " ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Sep 20 2020, after Andrew Howroyd *)
  • PARI
    q(r, s, g)={my(d=2*s - r^2); if(d<=0, d==0 && r%2==0 && gcd(g, r/2)==1, my(h); if(issquare(d, &h) && (r+h)%2==0 && gcd(g, gcd((r+h)/2, (r-h)/2))==1, 2, 0))}
    a(n)={my(m=2*n-1, s=2*m^2); sum(i=-sqrtint(s), sqrtint(s), sum(j=-sqrtint(s-i^2), sqrtint(s-i^2), q(i+j, s-i^2-j^2, gcd(i,j)) ))/12} \\ Andrew Howroyd, Aug 02 2018

Extensions

Terms a(51) and beyond from Andrew Howroyd, Aug 02 2018
Name and example section edited by Petros Hadjicostas, Apr 21 2020

A228441 G.f.: Sum_{k>0} -(-x)^k / (1 + x^k).

Original entry on oeis.org

1, -2, 2, -1, 2, -4, 2, 0, 3, -4, 2, -2, 2, -4, 4, 1, 2, -6, 2, -2, 4, -4, 2, 0, 3, -4, 4, -2, 2, -8, 2, 2, 4, -4, 4, -3, 2, -4, 4, 0, 2, -8, 2, -2, 6, -4, 2, 2, 3, -6, 4, -2, 2, -8, 4, 0, 4, -4, 2, -4, 2, -4, 6, 3, 4, -8, 2, -2, 4, -8, 2, 0, 2, -4, 6, -2, 4
Offset: 1

Views

Author

Michael Somos, Nov 02 2013

Keywords

Examples

			G.f. = x - 2*x^2 + 2*x^3 - x^4 + 2*x^5 - 4*x^6 + 2*x^7 + 3*x^9 - 4*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Sum[ -(-x)^k / (1 + x^k), {k, 1, n}], {x, 0, n}];
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^(# + n/#) &]]; (* Michael Somos, Jan 08 2015 *)
    a[n_] := Module[{e = IntegerExponent[n, 2]}, DivisorSigma[0, n] * If[e == 0, 1, (e-3)/(e+1)]]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, k, (-1)^(k + n/k)))};
    
  • PARI
    {a(n) = if( n<1, 0, numdiv(n) - 4 * sumdiv( n, k, k%4 == 2))};
    
  • PARI
    {a(n) = my(e); if( n<1, 0, e = valuation( n, 2); numdiv( n/2^e) * if( e>0, e-3, 1))};
    
  • PARI
    a(n)=direuler(p=1,n,if(p==2,(1-2*X)^2/(1-X)^2,1/(1-X)^2))[n] /* Ralf Stephan, Mar 27 2015 */

Formula

a(n) = number of divisors of n minus 4 times number of divisors of n of the form 4*k+2.
a(n) = Sum_{d|n} (-1)^(d+n/d). - N. J. A. Sloane, Nov 23 2018
Multiplicative with a(2^e) = e-3 if e>0, a(p^e) = e+1 if p>2.
Moebius transform is period 4 sequence [1, -3, 1, 1, ...].
G.f.: Sum_{k>0} x^k / (1 - x^k) - 4 * x^(4*k + 2) / (1 - x^(4*k + 2)).
a(2*n - 1) = A099774(n).
Dirichlet g.f.: zeta(s)^2*(1-2^(-s+1))^2 = eta^2(s) (the Dirichlet eta). - Ralf Stephan, Mar 27 2015
a(16n+8) = a(A051062(n)) = 0. - Michel Marcus, Mar 27 2015
O.g.f.: Sum_{n >= 1} (-1)^(n*(n+1))*x^(n^2)*(1 - x^n)/(1 + x^n). - Peter Bala, Mar 11 2019
Conjecture: a(n) = (7 - 2*(-1)^n)*tau(n) - 4*tau(2*n) = 5*tau(n) - (3 + (-1)^n)*tau(2*n), where tau = A000005. - Velin Yanev, Dec 17 2019
The proof of the above conjecture easily follows from the fact that both a(n) and tau(n) are multiplicative arithmetical functions and tau(p^e) = e + 1 for prime p. - Peter Bala, Jan 28 2022
a(n) = A000005(n) if n is odd, and A000005(n) * (A007814(n)-3)/(A007814(n)+1) if n is even. - Amiram Eldar, Sep 18 2023

A278086 1/12 of the number of integer quadruples with sum = 3*n and sum of squares = 7*n^2.

Original entry on oeis.org

1, 1, 4, 0, 4, 4, 6, 0, 12, 4, 10, 0, 14, 6, 16, 0, 16, 12, 19, 0, 24, 10, 22, 0, 20, 14, 36, 0, 30, 16, 32, 0, 40, 16, 24, 0, 38, 19, 56, 0, 42, 24, 42, 0, 48, 22, 46, 0, 42, 20, 64, 0, 54, 36, 40, 0, 76, 30, 60, 0, 60, 32, 72, 0, 56, 40, 68, 0, 88, 24, 72, 0, 72, 38, 80, 0, 60, 56, 80, 0, 108, 42, 82, 0, 64, 42, 120, 0, 90, 48, 84, 0, 128, 46, 76, 0, 98, 42, 120, 0
Offset: 1

Views

Author

Colin Mallows, Nov 14 2016

Keywords

Comments

Conjecture: a(n) is multiplicative with a(2) = 1, a(2^k) = 0 for k >= 2, and for k >= 1 and p an odd prime, a(p^k) = p^(k-1)*a(p) with a(p) = p + 1 for p == (2, 3, 8, 10, 12, 13, 14, 15, 18) (mod 19), a(p) = p - 1 for p == (1, 4, 5, 6, 7, 9, 11, 16, 17) (mod 19), and p(19) = 19. It would be nice to have a proof of this.
This sequence applies also to the case sum = n and ssq = 5*n^2.

Examples

			For the case r = 3 and s = 7, we have 12*a(3) = 48 because of (-3,2,5,5) and (-1,-1,5,6) (12 permutations each) and (-2,1,3,7) (24 permutations). For example, (-3) + 2 + 5 + 5 = 9 = 3*3 and (-3)^2 + 2^2 + 5^2 + 5^2 = 63 = 7*3^2.
For the case r = 1 and s = 5, we again have 12*a(3) = 48 because of (3,3,3,3) - (-3,2,5,5) = (6,1,-2,-2) and (3,3,3,3) - (-1,-1,5,6) = (4,4,-2,-3) (12 permutations each) and (3,3,3,3) - (-2,1,3,7) = (5,2,0,-4) (24 permutations). For example, 5 + 2 + 0 + (-4) = 3 = 1*3 and 5^2 + 2^2 + 0^2 + (-4)^2 = 45 = 5*3^2.
		

Crossrefs

Programs

  • Mathematica
    sqrtint = Floor[Sqrt[#]]&;
    q[r_, s_, g_] := Module[{d = 2 s - r^2, h}, If[d <= 0, d == 0 && Mod[r, 2] == 0 && GCD[g, r/2] == 1, h = Sqrt[d]; If[IntegerQ[h] && Mod[r+h, 2] == 0 && GCD[g, GCD[(r+h)/2, (r-h)/2]]==1, 2, 0]]] /. {True -> 1, False -> 0};
    a[n_] := Module[{s}, s = 7 n^2; Sum[q[3 n - i - j, s - i^2 - j^2, GCD[i, j]], {i, -sqrtint[s], sqrtint[s]}, {j, -sqrtint[s - i^2], sqrtint[s - i^2]}]/12];
    Table[an = a[n]; Print[n, " ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Sep 20 2020, after Andrew Howroyd *)
  • PARI
    q(r, s, g)={my(d=2*s - r^2); if(d<=0, d==0 && r%2==0 && gcd(g, r/2)==1, my(h); if(issquare(d, &h) && (r+h)%2==0 && gcd(g, gcd((r+h)/2, (r-h)/2))==1, 2, 0))}
    a(n)={my(s=7*n^2); sum(i=-sqrtint(s), sqrtint(s), sum(j=-sqrtint(s-i^2), sqrtint(s-i^2), q(3*n-i-j, s-i^2-j^2, gcd(i,j)) ))/12} \\ Andrew Howroyd, Aug 02 2018

Extensions

Example section edited by Petros Hadjicostas, Apr 21 2020

A112143 McKay-Thompson series of class 8D for the Monster group.

Original entry on oeis.org

1, -4, 2, 8, -1, -20, -2, 40, 3, -72, 2, 128, -4, -220, -4, 360, 5, -576, 8, 904, -8, -1384, -10, 2088, 11, -3108, 12, 4552, -15, -6592, -18, 9448, 22, -13392, 26, 18816, -29, -26216, -34, 36224, 38, -49700, 42, 67728, -51, -91688, -56, 123392, 66, -165128, 78, 219784, -85, -291072
Offset: 0

Views

Author

Michael Somos, Aug 28 2005

Keywords

Comments

The convolution square of this sequence is A007248, except for the constant term: T8D(q)^2 = T4C(q^2) - 8. - G. A. Edgar, Apr 02 2017

Examples

			T8D = 1/q -4*q +2*q^3 +8*q^5 -q^7 -20*q^9 -2*q^11 +40*q^13 +...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/2)*(eta[q]/eta[q^4])^4, {q, 0, 50}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, May 10 2018 *)
  • PARI
    q='q+O('q^50); Vec((eta(q)/eta(q^4))^4) \\ G. C. Greubel, May 10 2018

Formula

Expansion of q^(1/2)*(eta(q) / eta(q^4))^4 in powers of q. - G. A. Edgar, Apr 02 2017
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A046897(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 28 2017
Previous Showing 11-20 of 38 results. Next