cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 49 results. Next

A385617 G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x)) ).

Original entry on oeis.org

1, 2, 10, 82, 1062, 22646, 846570, 58644858, 7808479582, 2038568219422, 1054007965984050, 1084591195956246130, 2226674324358059364150, 9131600163886719149539590, 74851744440590132840318820090, 1226745312860243142951267683147178, 40204124737879503807503331117931168974
Offset: 0

Views

Author

Seiichi Manyama, Jul 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 17; A[] = 1; Do[A[x] = 1/( 1 - x*(A[x] + A[2*x]) ) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jul 05 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (2^j+1)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} (2^k+1) * a(k) * a(n-1-k).
a(n) ~ c * 2^(n*(n-1)/2), where c = 30.250837358072598377515060923766952434821313428993180484... - Vaclav Kotesovec, Jul 05 2025

A065942 Central column of triangle A065941.

Original entry on oeis.org

1, 1, 3, 4, 15, 21, 84, 120, 495, 715, 3003, 4368, 18564, 27132, 116280, 170544, 735471, 1081575, 4686825, 6906900, 30045015, 44352165, 193536720, 286097760, 1251677700, 1852482996, 8122425444, 12033222880, 52860229080, 78378960360
Offset: 0

Views

Author

Len Smiley, Nov 29 2001

Keywords

Comments

When viewed as (1,1), (3,4), (15,21), ... this represents a shallow staircase on Pascal's triangle, arranged as a square array. - Paul Barry, Mar 11 2003
Also central column of triangle A011973 (taking rows with odd number of terms only). - John Molokach, Jul 08 2013
Interleaving of A005809 and A045721. - Bruce J. Nicholson, Apr 24 2018

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 15*x^4 + 21*x^5 + 84*x^6 + 120*x^7 + ... - _Michael Somos_, Jun 23 2018
		

References

  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001 (Chapter 14)

Crossrefs

Cf. A065941 (complete triangle), A047749.

Programs

  • GAP
    List([0..40],n->Binomial(n+Int(n/2),n)); # Muniru A Asiru, Apr 28 2018
  • Mathematica
    Array[Binomial[# + Floor[#/2], #] &, 30, 0] (* Michael De Vlieger, Apr 27 2018 *)
  • PARI
    a(n) = binomial(n+n\2, n); \\ Altug Alkan, Apr 24 2018
    

Formula

a(n) = binomial(2n-floor((n+1)/2), floor(n/2)).
a(n+1) = Sum_{k=0..ceiling(n/2)} binomial(n+k, k). - Benoit Cloitre, Mar 06 2004
a(n) = binomial(n+floor(n/2), n). - Paul Barry, May 18 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1+k, k). - Paul Barry, Jul 06 2004
a(2n-1) = binomial(3n-3,n-1); a(2n) = binomial(3n-2,n-1). - John Molokach, Jul 08 2013
G.f.: A(x) = x*(d/dx)[log(S(x)-1)] = x*[(d/dx) S(x)]/[S(x)-1], where S(x) is the g.f. of A047749. - Vladimir Kruchinin, Jun 12 2014.
Conjecture: 8*n*(n-1)*a(n) -36*(n-1)*(n-3)*a(n-1) +6*(-9*n^2+18*n-14)*a(n-2) +27*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Jun 13 2014
0 = a(n)*(+281138850*a(n+2) +729089100*a(n+3) -77071527*a(n+4) -134472793*a(n+5)) +a(n+1)*(+15618825*a(n+2) -1650969*a(n+3) -9342280*a(n+4) -1729448*a(n+5)) +a(n+2)*(-19089675*a(n+2) -61394833*a(n+3) +6470716*a(n+4) +14929796*a(n+5)) +a(n+3)*(-1291668*a(n+3) +553572*a(n+4) +246032*a(n+5)) for all n in Z. - Michael Somos, Jun 23 2018

A385149 Number of chiral pairs of asymmetric polyominoes with n cells of the regular tiling with Schläfli symbol {4,oo}.

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 43, 225, 1162, 6081, 32315, 174856, 961764, 5369567, 30373643, 173811011, 1004802212, 5861460314, 34468644574, 204161097084, 1217143092549, 7299002607829, 44005589820244, 266608357403244, 1622502342468552, 9914884364399700
Offset: 0

Views

Author

Robert A. Russell, Jun 19 2025

Keywords

Comments

A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			 __ __ __    __ __ __
|__|__|__|  |__|__|__|  a(4) = 1.
      |__|  |__|
		

Crossrefs

Cf. A005034 (oriented), A005036 (unoriented), A369315 (chiral), A047749 (achiral), A001764 (rooted).

Programs

  • Mathematica
    Table[If[n<4,0,(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1) + Switch[Mod[n,4], 0,4Binomial[3n/4,n/4]/(n/2+1)-6Binomial[3n/2,n/2]/(n+1), 1,(4Binomial[(3n-3)/4,(n-1)/4]-10Binomial[(3n-1)/2,(n-1)/2])/(n+1)+(8Binomial[(3n+1)/4,(n-1)/4]+16Binomial[(3n-3)/4,(n-5)/4])/(n+3), 2,16Binomial[(3n-2)/4,(n-2)/4]/(n+2)-6Binomial[3n/2,n/2]/(n+1), 3,24Binomial[(3n-1)/4,(n-3)/4]/(n+3)-10Binomial[(3n-1)/2,(n-1)/2]/(n+1)])/8],{n,0,30}]

Formula

G.f.: (3*G(z) - G(z)^2 - 6*G(z^2) - 5z*G(z^2)^2 + 4*G(z^4) + 2z*G(z^4) + 2z*G(z^4)^2 + 4z^2*G(z^4)^2 + 4z^3*G(z^4)^3 + 2z^5*G(z^4)^4) / 8, where G(z)=1+z*G(z)^3 is the g.f. for A001764.

A047750 If n mod 2 = 0 then m := n/2 and a(n) = (3*m)!*(5*m+1)/((m+1)!*(2*m+1)!); otherwise m := (n-1)/2, a(n) = 6*(3*m+2)!/(m!*(2*m+3)!).

Original entry on oeis.org

1, 2, 3, 6, 11, 24, 48, 110, 231, 546, 1183, 2856, 6324, 15504, 34884, 86526, 197087, 493350, 1134705, 2861430, 6633315, 16829280, 39268320, 100134216, 234930276, 601661144, 1418201268, 3645533040, 8627761528, 22249511328
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    series(RootOf(x*A^3-2*A^2+3*A-1, A)^2, x=0, 30);  # Mark van Hoeij, May 16 2013
  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = 3(2n+3)(3n-4)(3n-2)a[n-2]/(4n(n+2)(2n+1)) + (3(18n+16)a[n-1])/(4n(n+2)(2n+1)); Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Dec 02 2016 *)
    Table[If[OddQ[n],6Binomial[(3n+1)/2,n+1]/(n+2),(5n+2)Binomial[3n/2,n/2] / ((n+1)(n+2))],{n,0,30}] (* Robert A. Russell, Feb 16 2024 *)
  • PARI
    a047750(n)={if(n%2,my(m=(n-1)/2);6*(3*m+2)!/(m!*(2*m+3)!),my(m=n/2);(3*m)!*(5*m+1)/((m+1)!*(2*m+1)!))};
    for(k=0,29,print1(a047750(k),", ")) \\ Hugo Pfoertner, Mar 07 2020

Formula

From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = sum of top row terms in M^n, M = the infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
0, 0, 1, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, ...
0, 0, 1, 0, 1, 0, ...
1, 1, 0, 1, 0, 1, ...
... (End)
8*n*(n+2)*a(n) + 4*(7*n^2 - 7*n - 17)*a(n-1) + 6*(-9*n^2 + 9*n - 17)*a(n-2) - 21*(3*n-5)*(3*n-7)*a(n-3) = 0. - R. J. Mathar, Jul 10 2013
From Robert A. Russell, Mar 20 2024: (Start)
a(n) = V(n) in the Beineke and Pippert link.
G.f.: 2*(G(z^2) - 1)/z + 2*G(z^2)^2 - G(z^2), where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)

A124305 Riordan array (1, 2*sqrt(3)*sin(arcsin(3*sqrt(3)*x/2)/3)/3).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 3, 0, 3, 0, 1, 0, 0, 7, 0, 4, 0, 1, 0, 12, 0, 12, 0, 5, 0, 1, 0, 0, 30, 0, 18, 0, 6, 0, 1, 0, 55, 0, 55, 0, 25, 0, 7, 0, 1, 0, 0, 143, 0, 88, 0, 33, 0, 8, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 25 2006

Keywords

Examples

			Triangle begins
  1,
  0,  1,
  0,  0,  1,
  0,  1,  0,  1,
  0,  0,  2,  0,  1,
  0,  3,  0,  3,  0,  1,
  0,  0,  7,  0,  4,  0,  1,
  0, 12,  0, 12,  0,  5,  0,  1
From _Paul Barry_, Sep 28 2009: (Start)
Production matrix is
  0, 1,
  0, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 (End)
		

Crossrefs

Cf. A047749 (row sums), A098746 (diagonal sums), A124304 (inverse).

Programs

  • Magma
    A124305:= func< n,k | n eq 0 select 1 else (1/2)*(1+(-1)^(n-k))*(k/n)*Binomial(n + Floor((n-k)/2) -1, n-1) >;
    [A124305(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 25 2023
    
  • Mathematica
    A124305[n_, k_]:= If[n==0, 1, (1/2)*(1+(-1)^(n-k))*(k/n)*Binomial[n +(n-k)/2 -1, (n-k)/2]];
    Table[A124305[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 19 2023 *)
  • SageMath
    def A124305(n,k): return 1 if n==0 else ((n-k+1)%2)*k*binomial(n + (n-k)//2 -1, n-1)//n
    flatten([[A124305(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 25 2023

Formula

Sum_{k=0..n} T(n, k) = A047749(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*(1 + (-1)^n)*A098746(n/2).
From G. C. Greubel, Aug 19 2023: (Start)
T(n, k) = (1/2)*(1 + (-1)^(n-k))*(k/n)*binomial(n + (n-k)/2 - 1, (n-k)/2), with T(0, 0) = 1.
T(n, n) = 1.
T(n, n-2) = A001477(n-2).
T(n, n-4) = A055998(n-4).
T(n, n-6) = A111396(n-6).
T(n, 0) = 0^n.
T(n, 1) = ((1-(-1)^n)/2)*A001764(floor((n-1)/2)).
T(n, 2) = ((1+(-1)^n)/2)*A006013(floor((n-2)/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n * A047749(n). (End)

A143338 G.f. A(x) satisfies A(x) = 1 + x*A(x)^3*A(-x).

Original entry on oeis.org

1, 1, 2, 8, 26, 127, 478, 2536, 10250, 56900, 239880, 1370272, 5940054, 34607146, 153018932, 904441648, 4058644842, 24254529036, 110096276440, 663665021280, 3040205250984, 18455364854839, 85176971647470, 520059936017128
Offset: 0

Views

Author

Paul D. Hanna, Aug 09 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 26*x^4 + 127*x^5 + 478*x^6 +...
Compare bisections of A(x)^2, A(x)^2*A(-x), and A(x)^4*A(-x)^2:
A(x)^2 = 1 + 2*x + 5*x^2 + 20*x^3 + 72*x^4 + 338*x^5 + 1378*x^6 + 6952*x^7 +...
A(x)^2*A(-x) = 1 + x + 5*x^2 + 11*x^3 + 72*x^4 + 191*x^5 + 1378*x^6 + 3979*x^7 +...
A(x)^4*A(-x)^2 = 1 + 2*x + 11*x^2 + 32*x^3 + 191*x^4 + 636*x^5 + 3979*x^6 +...
Related expansions:
A(x)^3 = 1 + 3*x + 9*x^2 + 37*x^3 + 144*x^4 + 669*x^5 + 2882*x^6 + 14229*x^7 +...
A(x)^3*A(-x) = 1 + 2*x + 8*x^2 + 26*x^3 + 127*x^4 + 478*x^5 + 2536*x^6 +...
A(x)^3*A(-x)^2 = 1 + x + 8*x^2 + 14*x^3 + 127*x^4 + 264*x^5 + 2536*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+O(x^21));for(i=0,n,A=1+x*A^3*subst(A,x,-x));polcoeff(A,n)}

Formula

a(0) = 1; a(n) = Sum_{i, j, k, l>=0 and i+j+k+l=n-1} (-1)^i * a(i) * a(j) * a(k) * a(l). - Seiichi Manyama, Jul 08 2025

A143549 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4*A(-x).

Original entry on oeis.org

1, 1, 3, 17, 85, 598, 3473, 26668, 166429, 1340079, 8724438, 72374714, 484498327, 4102336176, 28009706440, 240729330116, 1668007246157, 14499527706129, 101618389067849, 891275643857227, 6303425058175018, 55686806813191060
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2008

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 17*x^3 + 85*x^4 + 598*x^5 + 3473*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 18*x^2 + 108*x^3 + 635*x^4 + 4348*x^5 + 28336*x^6 +...
A(x)*A(-x) = 1 + 5*x^2 + 145*x^4 + 5971*x^6 + 287253*x^8 +...
[A(x)*A(-x)]^5 = 1 + 25*x^2 + 975*x^4 + 45605*x^6 + 2355490*x^8 +...
		

Crossrefs

Programs

  • Maple
    S:= series(RootOf(_Z^15*x^3-_Z^12*x^2+_Z^11*x^2-_Z^4+4*_Z^3-6*_Z^2+4*_Z-1),x,31):
    seq(coeff(S,x,i),i=0..30); # Robert Israel, Jul 10 2017
  • Mathematica
    nmax = 21; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x*A[x]^4*A[-x]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,2*n,A=1+x*A^4*subst(A^1,x,-x));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) + A(-x) = 1 + [A(x)*A(-x)] + x^2*[A(x)*A(-x)]^5.
G.f. satisfies: -x^3*A(x)^15+x^2*A(x)^12-x^2*A(x)^11+A(x)^4-4*A(x)^3+6*A(x)^2-4*A(x)+1 = 0. - Robert Israel, Jul 10 2017
a(0) = 1; a(n) = Sum_{i, j, k, l, m>=0 and i+j+k+l+m=n-1} (-1)^i * a(i) * a(j) * a(k) * a(l) * a(m). - Seiichi Manyama, Jul 08 2025

A192893 Number of symmetric 11-ary factorizations of the n-cycle (1,2...n).

Original entry on oeis.org

1, 1, 1, 6, 11, 81, 176, 1406, 3311, 27636, 68211, 585162, 1489488, 13019909, 33870540, 300138696, 793542167, 7105216833, 19022318084, 171717015470, 464333035881, 4219267597578, 11502251937176, 105085831400550, 288417894029200, 2647012241261856, 7306488667126803
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2011

Keywords

Comments

The six sequences displayed in Table 1 of the Bousquet-Lamathe reference are A047749, A143546, A143547, A143554, this sequence, and A192894. From this one should be able to guess a g.f.
Number of achiral noncrossing partitions composed of n blocks of size 11. - Andrew Howroyd, Feb 08 2024

Crossrefs

Column k=11 of A369929 and k=12 of A370062.
Cf. A143048.

Programs

  • PARI
    a(n)={my(m=n\2, p=5*(n%2)+1); binomial(11*m+p-1, m)*p/(10*m+p)} \\ Andrew Howroyd, Feb 08 2024

Formula

From Andrew Howroyd, Feb 08 2024: (Start)
a(2n) = binomial(11*n,n)/(10*n+1); a(2n+1) = binomial(11*n+5,n)*6/(10*n+6).
G.f. A(x) satisfies A(x) = 1 + x*A(x)^6*A(-x)^5. (End)
From Seiichi Manyama, Jul 07 2025: (Start)
G.f. A(x) satisfies A(x)*A(-x) = (A(x) + A(-x))/2 = G(x^2), where G(x) = 1 + x*G(x)^11 is the g.f. of A230388.
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_6>=0 and x_1+2*(x_2+x_3+...+x_6)=n-1} a(x_1) * Product_{k=2..6} a(2*x_k). (End)
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_11>=0 and x_1+x_2+...+x_11=n-1} (-1)^(x_1+x_2+x_3+x_4+x_5) * Product_{k=1..11} a(x_k). - Seiichi Manyama, Jul 09 2025

Extensions

a(11) onwards from Andrew Howroyd, Jan 26 2024
a(0)=1 prepended by Andrew Howroyd, Feb 08 2024

A235534 a(n) = binomial(6*n, 2*n) / (4*n + 1).

Original entry on oeis.org

1, 3, 55, 1428, 43263, 1430715, 50067108, 1822766520, 68328754959, 2619631042665, 102240109897695, 4048514844039120, 162250238001816900, 6568517413771094628, 268225186597703313816, 11034966795189838872624, 456949965738717944767791
Offset: 0

Views

Author

Bruno Berselli, Jan 12 2014

Keywords

Comments

This is the case l=4, k=2 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper.
First bisection of A001764.

Crossrefs

Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), this sequence (l=4, k=2), A235536 (l=6, k=2), A187357 (l=3, k=3), A235535 (l=6, k=3).

Programs

  • Magma
    l:=4; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
  • Mathematica
    Table[Binomial[6 n, 2 n]/(4 n + 1), {n, 0, 20}]

Formula

a(n) = A047749(4*n-2) for n>0.
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 4F3(1/6,1/3,2/3,5/6; 1/2,3/4,5/4; 729*x/16).
a(n) ~ 3^(6*n+1/2)/(sqrt(Pi)*2^(4*n+7/2)*n^(3/2)). (End)

A235535 a(n) = binomial(9*n, 3*n) / (6*n + 1).

Original entry on oeis.org

1, 12, 1428, 246675, 50067108, 11124755664, 2619631042665, 642312451217745, 162250238001816900, 41932353590942745504, 11034966795189838872624, 2946924270225408943665279, 796607831560617902288322405, 217550867863011281855594752680
Offset: 0

Views

Author

Bruno Berselli, Jan 12 2014

Keywords

Comments

This is the case l=6, k=3 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper.
Also, the sequence follows A002296 and A235536, namely binomial(7*n,n)/(6*n+1) and binomial(8*n,2*n)/(6*n+1); naturally, even binomial(10*n,4*n)/(6*n+1) is always integer.

Crossrefs

Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), A235534 (l=4, k=2), A235536 (l=6, k=2), A187357 (l=3, k=3), this sequence (l=6, k=3).

Programs

  • Magma
    l:=6; k:=3; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* here l is divisible by all the prime factors of k */
  • Maple
    seq(binomial(9*n,3*n)/(6*n+1), n=0..30); # Robert Israel, Feb 15 2021
  • Mathematica
    Table[Binomial[9 n, 3 n]/(6 n + 1), {n, 0, 20}]

Formula

a(n) = A001764(3*n) = A047749(6*n).
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 6F5(1/9,2/9,4/9,5/9,7/9,8/9; 1/3,1/2,2/3,5/6,7/6; 19683*x/64).
a(n) ~ 3^(9*n-1)/(sqrt(Pi)*4^(3*n+1)*n^(3/2)). (End)
D-finite with recurrence 8*(6*n + 5)*(2*n + 1)*(n + 1)*(3*n + 2)*(3*n + 1)*(6*n + 7)*a(n + 1) = 3*(9*n + 8)*(9*n + 7)*(9*n + 5)*(9*n + 4)*(9*n + 2)*(9*n + 1)*a(n). - Robert Israel, Feb 15 2021
Previous Showing 21-30 of 49 results. Next