cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A105552 Irregular triangle T(n,k) read down columns: the number of compositions c of n with largest_part(c)+length(c)=k+1 in row n, column k.

Original entry on oeis.org

1, 2, 4, 1, 7, 5, 2, 11, 14, 12, 5, 1, 16, 30, 39, 32, 18, 7, 2, 22, 55, 95, 113, 101, 71, 41, 18, 6, 1, 29, 91, 195, 299, 357, 350, 292, 207, 126, 64, 27, 9, 2, 37, 140, 357, 664, 978, 1204, 1283, 1198, 992, 731, 482, 284, 148, 66, 25, 7, 1, 46, 204, 602, 1309, 2274, 3329, 4253
Offset: 1

Views

Author

Alford Arnold, May 03 2005

Keywords

Comments

For each of the A000041(n) partitions of n, one can assign a weight to the partition which counts the permutations of that partition, given by the multinomial coefficient derived from the frequency representation of the parts.
An equivalent representation is given by writing down all compositions of n.
The entries count those partitions multiplied by their weights (=compositions) of n where the sum of the largest addend plus number of parts equals k+1. Only nonzero counts are entered into the sequence.
Each entry can also be interpreted as counting a subset of numbers in A055932, because there is a 1-to-1 correspondence between their prime signature and ordered partitions.
Each diagonal of T(n,k) can be decomposed into p(n) sequences. For example,
A086602 = 2 12 39 95 195 ... is the sum of
A000330 = 1 5 14 30 55 ... plus
A001296 = 1 7 25 65 140 ...
The main diagonal and subdiagonals in order of appearance are A000124, A000330, A086602, A089574, A107600, A107601, A109125, ...

Examples

			The row n=7 starts from the partitions (weights in parentheses) 7 (1), 6+1 (2), 5+2 (2), 4+3 (2), 5+1+1 (3), 4+2+1 (6=3!/1!/1!/1!), 3+3+1 (3), 3+2+2 (3), 4+1+1+1 (4=4!/1!/3!), 3+2+1+1 (12 = 4!/1!/1!/2!), 2+2+2+1 (4), 3+1+1+1+1+1 (5), 2+2+1+1+1 (10=5!/2!/3!), 2+1+1+1+1 (6), 1+1+1+1+1+1 (1).
Then T(7,7) = 1+2+3+4+5+6+1 = 22 is the sum of the weights of partitions with largest part 7 and length 1, largest part 6 and length 2,... largest part 1 and length 7.
T(7,6) = 2+6+12+10 = 30 is the sum of the weights of the partitions with largest part 6 and length 1, largest part 5 and length 2, ..., largest part 1 and length 6.
T(7,5) = 2+3+3+4 = 12 collects all the partitions with largest part 5 and length 1 down to largest part 1 and length 5.
The array has A033638(k) nonzero entries per column, starting at n=1 as :
1
..2
....4
....1..7
.......5..11
.......2..14..16
..........12..30..22
...........5..39..55..29
...........1..32..95..91..37
..............18.113.195.140
...............7.101.299.357
...............2
		

Crossrefs

Cf. A047969, A047970, A055932, A057335, A083480, A083906, A089349, A033638, A086602 (subdiagonal), A089574 (subdiagonal).

Programs

  • Maple
    A033638 := proc(n) ( (7+(-1)^n)/2 + n^2 )/4 ; end proc:
    freq := proc(L,n) local a,p; a := 0 ; for p in L do if p = n then a := a+1 ; end if; end do: a ; end proc:
    M3 := proc(L) local a,i; a := factorial(nops(L)) ; for i in convert(L,set) do a := a/factorial(freq(L,i)) ; end do: a ; end proc:
    A105552 := proc(n,k) local p,a,l ; a := 0 ; for p in combinat[partition](n) do if max(op(p)) + nops(p) = k+1 then a := a+ M3(p); end if; end do ; a ; end proc:
    for k from 1 to 15 do for n from k to k+A033638(k)+1 do T := A105552(n,k) ; if T >0 then printf("%d,", A105552(n,k)) ; end if; end do: printf("\n") ; end do: # R. J. Mathar, Jun 26 2010
    # second Maple program:
    b:= proc(n, k, p) option remember; `if`(n=0 and k=0, 1,
         `if`(k<1, 0, add(b(n-j, k-1-max(p, j)+p, max(p, j)), j=1..n)))
        end:
    T:= k-> seq(b(n, k+1, 0), n=k..k+floor((k-1)^2/4)):
    seq(T(k), k=1..10);  # Alois P. Heinz, Jul 24 2013
  • Mathematica
    b[n_, k_, p_] := b[n, k, p] = If[n == 0 && k == 0, 1, If[k < 1, 0, Sum[b[n - j, k - 1 - Max[p, j] + p, Max[p, j]], {j, 1, n}]]]; T[k_] := Table[b[n, k + 1, 0], {n, k, k + Floor[(k - 1)^2/4]}]; Table[T[k], {k, 1, 10}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

Formula

Row sums: Sum_{k=0..n} T(n,k) = 2^(n-1).
Column sums: Sum_{n>=k} T(n,k) = A047970(n).

Extensions

Definition clarified by R. J. Mathar, Jun 26 2010

A022526 Nexus numbers (n+1)^10-n^10.

Original entry on oeis.org

1, 1023, 58025, 989527, 8717049, 50700551, 222009073, 791266575, 2413042577, 6513215599, 15937424601, 35979939623, 75941127625, 151396163127, 287395735649, 522861237151, 916482272673, 1554473326175, 2560599031177, 4108933742199, 6439880978201, 9880041813223
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=9 of A047969.
Cf. A008454 (n^10).

Programs

  • Magma
    [(n+1)^10-n^10: n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Maple
    b:=10: a:=n->(n+1)^b-n^b: seq(a(n),n=0..18); # Muniru A Asiru, Feb 28 2018
  • Mathematica
    Table[(n+1)^10-n^10,{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
  • PARI
    for(n=0,20, print1((n+1)^10 - n^10, ", ")) \\ G. C. Greubel, Feb 27 2018

Formula

G.f.: (x +1)*(x^8 +1012*x^7 +46828*x^6 +408364*x^5 +901990*x^4 +408364*x^3 +46828*x^2 +1012*x +1) / (x -1)^10. - Colin Barker, Dec 22 2012
a(n) = A008454(n+1) - A008454(n). - Michel Marcus, Feb 28 2018
G.f.: polylog(-10, x)*(1-x)/x. See the g.f. of Colin Barker (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

Extensions

More terms from Colin Barker, Dec 22 2012

A022527 Nexus numbers: a(n) = (n+1)^11 - n^11.

Original entry on oeis.org

1, 2047, 175099, 4017157, 44633821, 313968931, 1614529687, 6612607849, 22791125017, 68618940391, 185311670611, 457696700077, 1049152023349, 2257404775627, 4600190689711, 8942430185041, 16679710263217, 29996513771599, 52221848818987, 88309741101781
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=10 of A047969.
Cf. A008455 (n^11).

Programs

Formula

G.f.: -(x^10 + 2036*x^9 + 152637*x^8 + 2203488*x^7 + 9738114*x^6 + 15724248*x^5 + 9738114*x^4 + 2203488*x^3 + 152637*x^2 + 2036*x + 1) / (x - 1)^11. - Colin Barker, Dec 22 2012
a(n) = A008455(n+1) - A008455(n). - Michel Marcus, Feb 28 2018
G.f.: polylog(-11, x)*(1-x)/x. See the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

A127452 Triangle, read by rows of n*(n+1)/2 + 1 terms, generated by the recurrence: start with a single '1' in row 0; row n+1 is generated from row n by first inserting zeros at positions {(m+1)*(m+2)/2 - 1, m>=0} in row n and then taking the partial sums in reverse order.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 6, 6, 4, 4, 2, 1, 1, 24, 24, 18, 18, 12, 8, 8, 4, 2, 1, 1, 120, 120, 96, 96, 72, 54, 54, 36, 24, 16, 16, 8, 4, 2, 1, 1, 720, 720, 600, 600, 480, 384, 384, 288, 216, 162, 162, 108, 72, 48, 32, 32, 16, 8, 4, 2, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2007

Keywords

Comments

The first column equals the factorials. Triangle A127420 is generated by a similar recurrence.

Examples

			The triangle begins:
1;
1, 1;
2, 2, 1, 1;
6, 6, 4, 4, 2, 1, 1;
24, 24, 18, 18, 12, 8, 8, 4, 2, 1, 1;
120, 120, 96, 96, 72, 54, 54, 36, 24, 16, 16, 8, 4, 2, 1, 1;
720, 720, 600, 600, 480, 384, 384, 288, 216, 162, 162, 108, 72, 48, 32, 32, 16, 8, 4, 2, 1, 1;
...
The recurrence is illustrated by the following examples.
Start with a single '1' in row 0.
To get row 1, insert 0 in row 0 at position 0,
and take partial sums in reverse order:
0,_1;
1,_1;
To get row 2, insert 0 in row 1 at positions [0,2],
and take partial sums in reverse order:
0,_1,_0,_1;
2,_2,_1,_1;
To get row 3, insert 0 in row 2 at positions [0,2,5],
and take partial sums in reverse order:
0,_2,_0,_2,_1,_0,_1;
6,_6,_4,_4,_2,_1,_1;
To get row 4, insert 0 in row 3 at positions [0,2,5,9],
and take partial sums in reverse order:
_0,__6,__0,__6,__4,_0,_4,_2,_1,_0,_1;
24,_24,_18,_18,_12,_8,_8,_4,_2,_1,_1;
etc.
Continuing in this way generates the factorials in the first column.
		

Crossrefs

Cf. A018927, A127420, A047969, A182961 (variant).

Programs

  • PARI
    T(n,k)=if(n<0 || k<0,0,if(n==0 && k==0,1, if(k==0, n!, if(issquare(8*k+1),T(n,k-1),T(n,k-1)-T(n-1,k-(sqrtint(8*k+1)+1)\2)))))
    
  • PARI
    T(n,k)=local(t=(sqrtint(8*k+1)-1)\2);(n-t)!*(n-t)^(k-t*(t+1)/2)*(n-t+1)^(t-k+t*(t+1)/2)

Formula

Sum_{k=0..n*(n+1)/2} k*T(n,k) = A018927(n+1) = Sum_{k=0..n} k*k!*{(k+1)^(n-k+1)-k^(n-k+1)}.
T(n,k) = (n-t)! * (n-t)^(k - t*(t+1)/2) * (n-t+1)^(t-k + t*(t+1)/2) where t=floor((sqrt(8*k+1)-1)/2). Also, Sum_{j=k*(k+1)/2..(k+1)*(k+2)/2-1} T(n,j) = A047969(n-k,k) = (n-k)!*((n-k+1)^(k+1)-(n-k)^(k+1)).

A022528 Nexus numbers (n+1)^12-n^12.

Original entry on oeis.org

1, 4095, 527345, 16245775, 227363409, 1932641711, 11664504865, 54878189535, 213710059745, 717570463519, 2138428376721, 5777672071535, 14381984674225, 33395827252815, 73052425515329, 151728638820031, 301147260519105, 574209144196415
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=11 of array A047969.

Programs

  • Magma
    [(n+1)^12-n^12: n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Mathematica
    lst={};Do[a=n^6;b=(n+1)^6;s=(a+b)*(b-a);AppendTo[lst,s],{n,0,4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 23 2009 *)
    Table[(n+1)^12-n^12,{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
    LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,4095,527345,16245775,227363409,1932641711,11664504865,54878189535,213710059745,717570463519,2138428376721,5777672071535},20] (* Harvey P. Dale, Apr 23 2019 *)
  • PARI
    vector(30, n, n--; (n+1)^12-n^12) \\ Colin Barker, Nov 30 2014

Formula

a(n) = A008456(n+1) - A008456(n). - Colin Barker, Nov 30 2014
G.f.: (x +1)*(x^10 +4082*x^9 +474189*x^8 +9713496*x^7 +56604978*x^6 +105907308*x^5 +56604978*x^4 +9713496*x^3 +474189*x^2 +4082*x +1) / (x -1)^12. - Colin Barker, Nov 30 2014
G.f.: polylog(-12, x)*(1-x)/x. See the g.f. of Colin Barker (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

A072024 Table by antidiagonals of T(n,k) = ((n+1)^k - (-n)^k)/(2*n+1).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 5, 7, 1, 1, 0, 1, 11, 13, 13, 1, 1, 0, 1, 21, 55, 25, 21, 1, 1, 0, 1, 43, 133, 181, 41, 31, 1, 1, 0, 1, 85, 463, 481, 461, 61, 43, 1, 1, 0, 1, 171, 1261, 2653, 1281, 991, 85, 57, 1, 1, 0, 1, 341, 4039, 8425, 10501, 2821, 1891, 113, 73, 1, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2002

Keywords

Comments

Rows of the array have g.f. x/((1+k*x)*(1-(k+1)*x)). - Philippe Deléham, Nov 24 2013

Examples

			Rows start:
0 1 1  1   1    1     1      1       1        1 ...
0 1 1  3   5   11    21     43      85      171 ...
0 1 1  7  13   55   133    463    1261     4039 ...
0 1 1 13  25  181   481   2653    8425    40261 ...
0 1 1 21  41  461  1281  10501   36121   246141 ...
0 1 1 31  61  991  2821  32551  117181  1093711 ...
0 1 1 43  85 1891  5461  84883  314245  3879331 ...
0 1 1 57 113 3305  9633 194713  734161 11638089 ...
...
		

Crossrefs

Rows include A057427, A001045, A015441, A053404, A053428, A053430, A065874, etc. Columns include A000004, A000012, A000012, A002061, A001844, A072025, etc.
Cf. A081297.

Programs

  • Magma
    [((k+1)^(n-k) - (-k)^(n-k))/(2*k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 27 2020
    
  • Maple
    seq(seq( ((k+1)^(n-k) - (-k)^(n-k))/(2*k+1), k=0..n), n=0..12); # G. C. Greubel, Jan 27 2020
  • Mathematica
    T[n_, k_]:= ((n + 1)^k - (-n)^k)/(2n + 1); Flatten[Join[{0}, Table[T[k, n- k], {n, 1, 15}, {k, 0, n}]]] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    for(n=0, 10, for(k=0, 9, print1(((n+1)^k-(-n)^k)/(2*n+1), ", "); ); print(); ) \\ Andrew Howroyd, Mar 26 2017
    
  • Sage
    def T(n, k): return ((n+1)^k - (-n)^k)/(2*n+1)
    [[T(k,n-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020

Formula

T(n, k) = T(n, k-1) + n*(n+1)*T(n, k-2) = A060959(A002378(n), k).
T(k, 2n) = (2n+1)*A047969(n, k+1).

A022529 Nexus numbers (n+1)^13-n^13.

Original entry on oeis.org

1, 8191, 1586131, 65514541, 1153594261, 11839990891, 83828316391, 452866803481, 1992110014441, 7458134171671, 24522712143931, 72470493235141, 195881901213181, 490839666661891, 1152480295105231, 2557404559011121, 5400978405535441, 10918386832765231
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=12 of array A047969.

Programs

Formula

a(n) = A010801(n+1) - A010801(n). - Michel Marcus, Sep 25 2014
G.f.: -(x^12 +8178*x^11 +1479726*x^10 +45533450*x^9 +423281535*x^8 +1505621508*x^7 +2275172004*x^6 +1505621508*x^5 +423281535*x^4 +45533450*x^3 +1479726*x^2 +8178*x +1) / (x-1)^13. - Colin Barker, Sep 25 2014
G.f.: polylog(-13, x)*(1-x)/x. See the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

A022538 Nexus numbers (n+1)^22 - n^22.

Original entry on oeis.org

1, 4194303, 31376865305, 17560804984807, 2366593604971209, 129237518051251511, 3778199344740720913, 69877155246255218415, 910983925888773026417, 9015229097816388767119, 71402749386839761113321, 470658689525596656480023, 2659777439042418687564025
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=21 of A047969.
Cf. A010810.

Programs

  • Magma
    [(n+1)^22 - n^22: n in [0..20]]; // G. C. Greubel, Feb 27 2018
  • Maple
    b:=22: a:=n->(n+1)^b-n^b: seq(a(n),n=0..18); # Muniru A Asiru, Feb 28 2018
  • Mathematica
    Table[(n+1)^22 - n^22, {n,0,20}] (* G. C. Greubel, Feb 27 2018 *)
  • PARI
    for(n=0,20, print1((n+1)^22 - n^22, ", ")) \\ G. C. Greubel, Feb 27 2018
    

Formula

a(n) = A010810(n+1) - A010810(n). - Michel Marcus, Feb 27 2018

Extensions

Terms a(12) onward added by G. C. Greubel, Feb 27 2018

A242431 Triangle read by rows: T(n, k) = (k + 1)*T(n-1, k) + Sum_{j=k..n-1} T(n-1, j) for k < n, T(n, n) = 1. T(n, k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 14, 10, 4, 1, 43, 35, 17, 5, 1, 144, 128, 74, 26, 6, 1, 523, 491, 329, 137, 37, 7, 1, 2048, 1984, 1498, 730, 230, 50, 8, 1, 8597, 8469, 7011, 3939, 1439, 359, 65, 9, 1, 38486, 38230, 33856, 21568, 9068, 2588, 530, 82, 10, 1
Offset: 0

Views

Author

Peter Luschny, May 14 2014

Keywords

Examples

			0|    1;
1|    2,    1;
2|    5,    3,    1;
3|   14,   10,    4,   1;
4|   43,   35,   17,   5,   1;
5|  144,  128,   74,  26,   6,  1;
6|  523,  491,  329, 137,  37,  7, 1;
7| 2048, 1984, 1498, 730, 230, 50, 8, 1;
		

Crossrefs

Programs

  • Maple
    T := proc(n, k) option remember; local j;
        if k=n then 1
      elif k>n then 0
      else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
        fi end:
    seq(print(seq(T(n,k), k=0..n)), n=0..7);
  • Sage
    def A242431_rows():
        T = []; n = 0
        while True:
            T.append(1)
            yield T
            for k in (0..n):
                T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
            n += 1
    a = A242431_rows()
    for n in range(8): next(a)

Formula

T(n, 0) = A047970(n).
Sum_{k=0..n} T(n, k) = A112532(n+1).
From Mathew Englander, Feb 25 2021: (Start)
T(n,k) = 1 + Sum_{i = k+1..n} i*(i+1)^(n-i).
T(n,k) = T(n,k+1) + (k+1)*(k+2)^(n-k-1) for 0 <= k < n.
T(n,k) = T(n,k+1) + (k+2)*(T(n-1,k) - T(n-1,k+1)) for 0 <= k <= n-2.
T(n,k) = Sum_{i = 0..n-k} (k+2)^i*A089246(n-k,i).
Sum_{i = k..n} T(i,k) = Sum_{i = 0..n-k} (n+2-i)^i = Sum_{i = 0..n-k} A101494(n-k,i)*(k+2)^i. (End)

A343237 Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2021

Keywords

Comments

This is the row reversed version of the triangle A047969(n, m). The corresponding array A047969 is a(n, k) = A(k, n) (transposed of array A).
A(n-1, k-1) = k^n - (k-1)^n gives the number of n-digit numbers with digits from K = {1, 2, 3, ..., k} such that any digit from K, say k, appears at least once. Motivated by a comment in A005061 by Enrique Navarrete, the instance k=4 for n >= 1 (the column 3 in array A), and the d = 3 (sub)-diagonal sequence of T for m >= 0.

Examples

			The array A begins:
n\k  0  1   2    3     4     5     6      7      8      9 ...
-------------------------------------------------------------
0:   1  1   1    1     1     1     1      1      1      1 ...
1:   1  3   5    7     9    11    13     15     17     19 ...
2:   1  7  19   37    61    91   127    169    217    271 ...
3:   1 15  65  175   369   671  1105   1695   2465   3439 ...
4:   1 31 211  781  2101  4651  9031  15961  26281  40951 ...
5:   1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m   0    1     2     3     4     5    6    7   8  9 10 ...
-------------------------------------------------------------
0:    1
1:    1    1
2:    1    3     1
3:    1    7     5     1
4:    1   15    19     7     1
5:    1   31    65    37     9     1
6:    1   63   211   175    61    11    1
7:    1  127   665   781   369    91   13    1
8:    1  255  2059  3367  2101   671  127   15   1
9:    1  511  6305 14197 11529  4651 1105  169  17  1
10:   1 1023 19171 58975 61741 31031 9031 1695 217 19  1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is,  3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4):  144, 414, 441;  244, 424, 442;  344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
		

Crossrefs

Cf. A005061, A008292, A047969 (reversed), A045531 (central diagonal), A047970 (row sums of triangle).
Row sequences of array A (nexus numbers): A000012, A005408, A003215, A005917(k+1), A022521, A022522, A022523, A022524, A022525, A022526, A022527, A022528.
Column sequences of array A: A000012, A000225(n+1), A001047(n+1), A005061(n+1), A005060(n+1), A005062(n+1), A016169(n+1), A016177(n+1), A016185(n+1), A016189(n+1), A016195(n+1), A016197(n+1).

Programs

  • Maple
    egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
    cx := n -> series(n!*coeff(ser, x, n), y, 12):
    Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
    for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
  • Mathematica
    A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)

Formula

Array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0.
A(n-1, k-1) = Sum_{j=1} binomial(n, j)*(k-1)^(n-j) = Sum_{j=0} binomial(n, j)*(k-1)^(n-j) - (k-1)^n = (1+(k-1))^n - (k-1)^n = k^n - (k-1)^n (from the combinatorial comment on A(n-1, k-1) above).
O.g.f. row n of array A: RA(n, x) = P(n, x)/(1 - x)^n, with P(n, x) = Sum_{m=0..n} A008292(n+1, m+1)*x^m, (the Eulerian number triangle A008292 has offset 1) for n >= 0. (See the Oct 26 2008 comment in A047969 by Peter Bala). RA(n, x) = polylog(-(n+1), x)*(1-x)/x. (For P(n, x) see the formula by Vladeta Jovovic, Sep 02 2002.)
E.g.f. of e.g.f.s of the rows of array A: EE(x, y) = exp(x)*(1 + y*(exp(x) - 1))*exp(y*exp(x)), that is A(n, k) = [y^k/k!][x^n/n!] EE(x, y).
Triangle T(n, m) = A(n-m, m) = (m+1)^(n-m+1) - m^(n-m+1), n >= 0, m = 0, 1, ..., n.
E.g.f.: -(exp(x)-1)/(x*exp(x)*y-x). - Vladimir Kruchinin, Nov 02 2022
Previous Showing 21-30 of 44 results. Next