A112739
Array counting nodes in rooted trees of height n in which the root and internal nodes have valency k (and the leaf nodes have valency one).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 5, 2, 1, 1, 5, 10, 7, 2, 1, 1, 6, 17, 22, 9, 2, 1, 1, 7, 26, 53, 46, 11, 2, 1, 1, 8, 37, 106, 161, 94, 13, 2, 1, 1, 9, 50, 187, 426, 485, 190, 15, 2, 1, 1, 10, 65, 302, 937, 1706, 1457, 382, 17, 2, 1, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 19
Offset: 0
As a square array, rows begin
1,1,1,1,1,1,... (A000012)
1,2,2,2,2,2,... (A040000)
1,3,5,7,9,11,... (A005408)
1,4,10,22,46,94,... (A033484)
1,5,17,53,161,485,... (A048473)
1,6,26,106,426,1706,... (A020989)
1,7,37,187,937,4687,... (A057651)
1,8,50,302,1814,10886,... (A061801)
As a number triangle, rows start
1;
1,1;
1,2,1;
1,3,2,1;
1,4,5,2,1;
1,5,10,7,2,1;
- L. He, X. Liu and G. Strang, (2003) Trees with Cantor Eigenvalue Distribution. Studies in Applied Mathematics 110 (2), 123-138.
- L. He, X. Liu and G. Strang, Laplacian eigenvalues of growing trees, Proc. Conf. on Math. Theory of Networks and Systems, Perpignan (2000).
Cf.
A112468,
A000012,
A040000,
A005408,
A033484,
A048473,
A020989,
A057651,
A061801,
A238275,
A238276,
A138894,
A090843,
A199023.
A171476
a(n) = 6*a(n-1) - 8*a(n-2) for n > 1, a(0)=1, a(1)=6.
Original entry on oeis.org
1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528
Offset: 0
Cf.
A006516 (2^(n-1)*(2^n-1)),
A020522 (4^n-2^n),
A048473 (2*3^n-1),
A151821 (powers of 2, omitting 2 itself),
A010684 (repeat 1, 3),
A084633 (inverse binomial transform of repeated odd numbers),
A168589 ((2-3^n)*(-1)^n),
A081625 (2*5^n-3^n),
A081626 (2*6^n-4^n),
A081627 (2*7^n-5^n),
A010036 (sum of 2^n, ..., 2^(n+1)-1),
A006095 (Gaussian binomial coefficient [n, 2] for q=2),
A171472,
A171473.
-
[2*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
LinearRecurrence[{6,-8},{1,6},30] (* Harvey P. Dale, Aug 02 2020 *)
-
m=23; v=concat([1, 6], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v
A198480
a(n) = 2*7^n - 1.
Original entry on oeis.org
1, 13, 97, 685, 4801, 33613, 235297, 1647085, 11529601, 80707213, 564950497, 3954653485, 27682574401, 193778020813, 1356446145697, 9495123019885, 66465861139201, 465261027974413, 3256827195820897, 22797790370746285
Offset: 0
-
[2*7^n-1: n in [0..20]]
-
CoefficientList[Series[(1+5*x)/((1-x)*(1-7*x)),{x,0,40}],x] (* Vincenzo Librandi, Jul 06 2012 *)
2*7^Range[0,20]-1 (* or *) LinearRecurrence[{8,-7},{1,13},20] (* Harvey P. Dale, Aug 19 2022 *)
-
A198480(n):=2*7^n-1$ makelist(A198480(n),n,0,20); /* Martin Ettl, Nov 09 2012 */
-
a(n)=2*7^n-1 \\ Charles R Greathouse IV, Dec 28 2011
A048471
Array T read by diagonals: T(k,n) = 2^(k-1) * (3^n - 1) + 1.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 14, 9, 5, 1, 41, 27, 17, 9, 1, 122, 81, 53, 33, 17, 1, 365, 243, 161, 105, 65, 33, 1, 1094, 729, 485, 321, 209, 129, 65, 1, 3281, 2187, 1457, 969, 641, 417, 257, 129, 1, 9842, 6561, 4373, 2913, 1937, 1281, 833, 513
Offset: 0
Diagonals (each starting on row 1): {1}; {2,1}; {5,3,1}; ...
Row 1 = (1, 2, 5, 14, 41, ...) =
A007051.
Row 2 = (1, 3, 9, 27, 81, ...) =
A000244.
Original entry on oeis.org
1, 6, 23, 76, 237, 722, 2179, 6552, 19673, 59038, 177135, 531428, 1594309, 4782954, 14348891, 43046704, 129140145, 387420470, 1162261447, 3486784380, 10460353181, 31381059586, 94143178803, 282429536456, 847288609417
Offset: 2
- Vincenzo Librandi, Table of n, a(n) for n = 2..2000
- P. A. MacMahon, The divisors of numbers, Proc. London Math. Soc., (2) 19 (1920), 305-340; Coll. Papers II, pp. 267-302.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
-
[3^(n-1)-n: n in [2..30]]; // Vincenzo Librandi, Sep 05 2011
-
a[0]:=1:for n from 1 to 24 do a[n]:=(4*a[n-1]-3*a[n-2]+2) od: seq(a[n], n=0..24); # Zerinvary Lajos, Jun 08 2007
-
Table[3^(n-1) -n, {n,2,30}] (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *)
LinearRecurrence[{5,-7,3},{1,6,23},30] (* Harvey P. Dale, Jul 03 2024 *)
-
[3^(n-1) -n for n in (2..32)] # G. C. Greubel, Jan 07 2022
A119725
Triangular array read by rows: T(n,1) = T(n,n) = 1, T(n,k) = 3*T(n-1,k-1) + 2*T(n-1,k).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 13, 17, 1, 1, 29, 73, 53, 1, 1, 61, 233, 325, 161, 1, 1, 125, 649, 1349, 1297, 485, 1, 1, 253, 1673, 4645, 6641, 4861, 1457, 1, 1, 509, 4105, 14309, 27217, 29645, 17497, 4373, 1, 1, 1021, 9737, 40933, 97361, 140941, 123929, 61237, 13121, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 13, 17, 1;
1, 29, 73, 53, 1;
1, 61, 233, 325, 161, 1;
1, 125, 649, 1349, 1297, 485, 1;
1, 253, 1673, 4645, 6641, 4861, 1457, 1;
1, 509, 4105, 14309, 27217, 29645, 17497, 4373, 1;
1, 1021, 9737, 40933, 97361, 140941, 123929, 61237, 13121, 1;
-
function T(n,k)
if k eq 1 or k eq n then return 1;
else return 3*T(n-1,k-1) + 2*T(n-1,k);
end if;
return T;
end function;
[T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 18 2019
-
T:= proc(n, k) option remember;
if k=1 and k=n then 1
else 3*T(n-1, k-1) + 2*T(n-1, k)
fi
end:
seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 18 2019
-
T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 3*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n,k], {n,10}, {k,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
T(n,k) = if(k==1 || k==n, 1, 3*T(n-1,k-1) + 2*T(n-1,k)); \\ G. C. Greubel, Nov 18 2019
-
@CachedFunction
def T(n, k):
if (k==1 or k==n): return 1
else: return 3*T(n-1, k-1) + 2*T(n-1, k)
[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 18 2019
A171884
Lexicographically earliest injective nonnegative sequence a(n) satisfying |a(n+1) - a(n)| = n for all n.
Original entry on oeis.org
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, 42, 63, 41, 64, 40, 65, 39, 66, 38, 67, 37, 68, 36, 69, 35, 70, 34, 71, 33, 72, 32, 73, 31, 74, 30, 75, 29, 76, 28, 77, 27, 78, 26, 79, 133, 188, 132, 189, 131, 190, 130, 191, 129, 192, 128, 193, 127, 194
Offset: 1
We begin with 0, 0+1=1, 1+2=3. 3-3=0 cannot be the next term because 0 is already in the sequence so we go to 3+3=6. The next could be 6-4=2 or 6+4=10 but we choose 2 because it is smaller.
Cf.
A005132, which allows duplicate values.
Cf. also
A118201, in which every value of a(n) and of |a(n+1)-a(n)| occurs exactly once, but does not ensure that the latter is strictly increasing.
-
A171884[{}, , ] := {};
A171884[L_List, max_Integer, True] := If[Length[L] == max, L, With[{n = Length[L]},
If[Last[L] - n < 1 || MemberQ[L, Last[L] - n],
If[MemberQ[L, Last[L] + n],
A171884[Drop[L, -1], max, False],
A171884[Append[L, Last[L] + n], max, True]],
A171884[Append[L, Last[L] - n], max, True]]]]
A171884[L_List, max_Integer, False] := With[{n = Length[L]},
If[MemberQ[L, Last[L] + n],
A171884[Drop[L, -1], max, False],
A171884[Append[L, Last[L] + n], max, True]]]
A171884[{0}, 200, True] (* Paul Raff, Mar 15 2010 *)
-
A171884_upto(N,a=0,t=2)=vector(N,k, a+=if(!bitand(k,1), k-1, t-=1, 1-k, t=k-1)) \\ or:
A171884_upto(N,a)=vector(N,k,a+=if(bitand(k,1)&&k\2!=3^valuation(k-(k>1),3),1-k,k-1)) \\ M. F. Hasler, Apr 05 2019
a(n) = if(n<=2, n-1, my(k=logint((n-1)\2, 3), r=n-2*3^k); if(r%2, 5*3^k-1-(r+1)/2, 7*3^k-2+r/2)) \\ Jianing Song, Oct 07 2022
A198643
a(n) = 5*3^n-1.
Original entry on oeis.org
4, 14, 44, 134, 404, 1214, 3644, 10934, 32804, 98414, 295244, 885734, 2657204, 7971614, 23914844, 71744534, 215233604, 645700814, 1937102444, 5811307334, 17433922004, 52301766014, 156905298044, 470715894134, 1412147682404, 4236443047214
Offset: 0
A080960
Third binomial transform of A010685 (period 2: repeat 1,4).
Original entry on oeis.org
1, 7, 34, 148, 616, 2512, 10144, 40768, 163456, 654592, 2619904, 10482688, 41936896, 167759872, 671064064, 2684305408, 10737319936, 42949476352, 171798298624, 687193980928, 2748777496576, 10995113132032, 43980458819584
Offset: 0
-
binomtf:=func< V | [ &+[ Binomial(i-1, k-1)*V[k]: k in [1..i] ]: i in [1..#V] ] >; binomtf(binomtf(binomtf(&cat[ [1, 4]: n in [1..12] ]))); // Klaus Brockhaus, Nov 26 2009
-
RecurrenceTable[{a[0]==1,a[n]==4a[n-1]+3*2^(n-1)},a,{n,30}] (* or *) LinearRecurrence[{6,-8},{1,7},30] (* Harvey P. Dale, Nov 12 2012 *)
CoefficientList[Series[(1+x)/((1-2x)(1-4x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
-
[2^(n-1)*(5*2^n -3) for n in (0..30)] # G. C. Greubel, Nov 23 2021
A096252
Array read by rows, starting with n=0: row n lists A057077(n+1)*8^(n+1)/2, A057077(n+2)*8^(n+1)/2, A057077(n+1)*8^(n+1).
Original entry on oeis.org
4, -4, 8, -32, -32, -64, -256, 256, -512, 2048, 2048, 4096, 16384, -16384, 32768, -131072, -131072, -262144, -1048576, 1048576, -2097152, 8388608, 8388608, 16777216, 67108864, -67108864, 134217728, -536870912, -536870912, -1073741824
Offset: 0
-
CoefficientList[Series[4(1-x-2x^2-4x^3)/(1-4x^2+16x^4),{x,0,40}],x] (* or *) LinearRecurrence[ {0,4,0,-16},{4,-4,8,-32},40] (* Harvey P. Dale, Feb 15 2024 *)
-
[(-1)^(floor((floor(n/3)+((n%3)%2)+1)/2)) * 8^(floor(n/3)+1) / 2^(((n+1)^2)%3) for n in range(30)]
# Danny Rorabaugh, May 13 2016
Edited with clearer definition by
Omar E. Pol, Dec 29 2008
Comments