cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A194767 Denominator of the fourth increasing diagonal of the autosequence of second kind from (-1)^n / (n+1).

Original entry on oeis.org

2, 2, 12, 20, 10, 42, 56, 24, 90, 110, 44, 156, 182, 70, 240, 272, 102, 342, 380, 140, 462, 506, 184, 600, 650, 234, 756, 812, 290, 930, 992, 352, 1122, 1190, 420, 1332, 1406, 494, 1560, 1640, 574, 1806, 1892, 660, 2070, 2162, 752, 2352, 2450, 850, 2652, 2756, 954, 2970, 3080, 1064, 3306, 3422, 1180, 3660
Offset: 0

Views

Author

Paul Curtz, Sep 02 2011

Keywords

Comments

The autosequence of first kind from (-1)^n/(n+1) is A189733.
For the second kind (the second increasing diagonal is (-1)^n/(n+1), half of the main one):
2, 1, 0, -1/2, -1/3, 1/6, 1/2, 5/12,
-1, -1, -1/2, 1/6, 1/2, 1/3, -1/12, -7/20,
0, 1/2, 2/3, 1/3, -1/6, -5/12, -4/15, 1/12,
1/2, 1/6, -1/3, -1/2, -1/4, 3/20, 7/20, 13/60,
-1/3, -1/2, -1/6, 1/4, 2/5, 1/5, -2/15, -3/10,
-1/6, 1/3, 5/12, 3/20, -1/5, -1/3, -1/6, 5/42,
1/2, 1/12, -4/15, -7/20, -2/15, 1/6, 2/7, 1/7,
-5/12, -7/20, -1/12, 13/60, 3/10, 5/42, -1/7, -1/4.
Main diagonal: (period 2:repeat 2, -1)/A026741(n+1).
Second (increasing) diagonal: (-1)^n / (n+1).
Third (increasing) diagonal: (-1)^(n+1)*A026741(n) / A045896(n).
Fourth (increasing) diagonal: (-1)^(n+1)*A146535(n)/ a(n).

Crossrefs

Programs

  • Mathematica
    c = Table[1/9 (7 n + 7 n^2 + 2 n Cos[2 n *Pi/3] + 2 n^2 Cos[2 n *Pi/3] + 2 Sqrt[3] n Sin[2 n *Pi/3] + 2 Sqrt[3] n^2 Sin[2 n *Pi/3]), {n, 1, 50}] (* Roger Bagula, Mar 25 2012 *)
    a[n_] := (n+1) * Numerator[(n+2)/3]; Array[a, 60, 0] (* Amiram Eldar, Sep 17 2023 *)
    LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{2,2,12,20,10,42,56,24,90},60] (* Harvey P. Dale, May 15 2025 *)

Formula

a(3*n) = (3*n+1)*(3*n+2), a(3*n+1) = (n+1)*(3*n+2), a(3*n+2) = 3*(n+1)*(3*n+4).
G.f.: 2*(1+x+6*x^2+7*x^3+2*x^4+3*x^5+x^6)/(1-x^3)^3. - Jean-François Alcover, Nov 11 2016
a(n+2) = 2 * A306368(n) for n >= 0. - Joerg Arndt, Aug 25 2023
a(n) = (n+1) * A051176(n+2) for n >= 0. - Paul Curtz, Sep 13 2023
Sum_{n>=0} 1/a(n) = 1 + log(3) - Pi/(3*sqrt(3)). - Amiram Eldar, Sep 17 2023

A250328 Denominator of the harmonic mean of the first n pentagonal numbers.

Original entry on oeis.org

1, 3, 77, 877, 6271, 36049, 36423, 422137, 49691099, 1448086909, 11631128477, 2334008785, 44471893747, 1827784004699, 832564679309, 39202882860913, 196334425398149, 3473612060358899, 3478128507653999, 205449856947685261, 303604578504856471
Offset: 1

Views

Author

Colin Barker, Nov 18 2014

Keywords

Comments

a(n+1) is, for n >= 0, also the numerator of the partial sums of the reciprocals of twice the pentagonal numbers {A049450(k+1)}A294513(n)%20(assuming%20that%20A250327(n+1)/(n+1)%20=%20A294513(n)/2).%20-%20_Wolfdieter%20Lang">{k>=0} with the denominators given in A294513(n) (assuming that A250327(n+1)/(n+1) = A294513(n)/2). - _Wolfdieter Lang, Nov 02 2017

Examples

			a(3) = 77 because the pentagonal numbers A000326(n), for n = 1,2,3 are 1, 5, 12 and 3/(1/1+1/5+1/12) = 180/77.
		

Crossrefs

Cf. A000326, A250327 (numerators).

Programs

  • Mathematica
    With[{s = Array[PolygonalNumber[5, #] &, 21]}, Denominator@ Array[HarmonicMean@ Take[s, #] &, Length@ s]] (* Michael De Vlieger, Nov 02 2017 *)
  • PARI
    harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
    s=vector(30); for(k=1, #s, s[k]=denominator(harmonicmean(vector(k, i, (3*i^2-i)/2)))); s

A064045 Square array read by antidiagonals of number of length 2k walks on an n-dimensional hypercubic lattice starting and finishing at the origin and staying in the nonnegative part.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 10, 3, 1, 0, 14, 70, 24, 4, 1, 0, 42, 588, 285, 44, 5, 1, 0, 132, 5544, 4242, 740, 70, 6, 1, 0, 429, 56628, 73206, 16016, 1525, 102, 7, 1, 0, 1430, 613470, 1403028, 410928, 43470, 2730, 140, 8, 1, 0, 4862, 6952660, 29082339, 11925672, 1491210, 96684, 4445, 184, 9, 1
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Examples

			Rows start:
1, 0,  0,   0,    0,     0,       0, ...
1, 1,  2,   5,   14,    42,     132, ...
1, 2, 10,  70,  588,  5544,   56628, ...
1, 3, 24, 285, 4242, 73206, 1403028, ...
		

Crossrefs

Rows include A000007, A000108, A005568, A064037. Columns include A000012, A001477, A049450, A064046. Cf. A064044.

Programs

  • Maple
    a:= proc(n, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
           add(binomial(2*k, 2*j)*binomial(2*j, j)/
           (j+1)*a(n-1, k-j), j=0..k))
        end:
    seq(seq(a(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 06 2014
  • Mathematica
    a[n_, k_] := a[n, k] = If[n == 0, If[k == 0, 1, 0], Sum[Binomial[2*k, 2*j]* Binomial[2*j, j]/(j+1)*a[n-1, k-j], {j, 0, k}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

a(n,k) = Sum_{j=0..k} C(2k,2j) c(j) a(n-1,k-j) where c(j) = C(2j,j)/(j+1) = A000108(j) with a(0,0) = 1 and a(0,k) = 0 for k>0.

A294514 Decimal expansion of (3/2)*log(3) - Pi/(2*sqrt(3)).

Original entry on oeis.org

7, 4, 1, 0, 1, 8, 7, 5, 0, 8, 8, 5, 0, 5, 5, 6, 1, 1, 7, 9, 5, 8, 2, 8, 7, 2, 6, 5, 6, 2, 7, 1, 0, 6, 9, 0, 8, 2, 9, 2, 0, 2, 7, 1, 2, 6, 8, 7, 7, 5, 3, 8, 8, 9, 8, 1, 7, 0, 9, 9, 0, 3, 2, 7, 6, 2, 1, 7, 9, 8, 4, 9, 2, 6, 4, 7, 3, 6, 5, 0, 8, 4, 6, 8, 3, 6, 1, 1, 3, 8, 1, 1, 4, 5, 6, 8, 0, 4, 8, 7, 5, 3, 8, 4, 3, 8
Offset: 0

Views

Author

Wolfdieter Lang, Nov 02 2017

Keywords

Comments

This is the limit of the series V(3,2) := Sum_{k>=0} 1/((k + 1)*(3*k + 1)) = Sum_{k>=0} 1/A049450(k+1) = (1/2)*Sum_{k>=0} (3/(3*k + 1) - 1/(k+1)) with partial sums given in A250328(n+1)/A294513(n).

Examples

			0.7410187508850556117958287265627106908292027126877538898170990327...
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193, with v_2(3) = (1/3)*V(3,2).

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(3/2)*Log[3] - Pi/(2*Sqrt[3]), 157]][[1]] (* Georg Fischer, Apr 04 2020 *)
  • PARI
    (3/2)*log(3) - Pi/(2*sqrt(3)) \\ Michel Marcus, Nov 02 2017

Formula

Equals V(3,2) = Sum_{k>=0} 1/((k + 1)*(3*k + 1)).
Equals Sum_{k>=2} zeta(k)/3^(k-1). - Amiram Eldar, May 31 2021

Extensions

a(100) ff. corrected by Georg Fischer, Apr 04 2020
Data truncated by Sean A. Irvine, Apr 10 2020

A306242 Number of ways to write n as x*(3x+1) + y*(3y-1) + z*(3z+2) + w*(3w-2), where x,y,z,w are nonnegative integers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 3, 2, 2, 1, 3, 4, 3, 3, 2, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 7, 4, 5, 4, 3, 4, 4, 6, 6, 3, 9, 6, 2, 5, 5, 8, 4, 6, 7, 6, 5, 6, 3, 5, 9, 6, 8, 7, 8, 7, 7, 8, 7, 4, 9, 8, 6, 6, 7, 7, 13, 9, 6, 6, 7, 11, 4, 6, 11, 9, 12
Offset: 0

Views

Author

Zhi-Wei Sun, Jan 31 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 1, 2, 3, 4, 9, 13. Moreover, any nonnegative integer n can be written as x*(3x+1) + y*(3y-1) + z*(3z+2) + w*(3w-2), where x,y,z,w are nonnegative integers with x or y even.
The conjecture has been verified for n up to 10^6.
By Theorem 1.3 of the linked 2017 paper of the author, each nonnegative integer can be written as x*(3x+1) + y*(3y-1) + z*(3z+2) + 0*(3*0-2) with x,y,z integers.
We also have some other similar conjectures. For example, we conjecture that every n = 0,1,2,... can be written as x*(5x+1)/2 + y*(5y-1)/2 + z*(5z+3)/2 + w*(5w-3)/2 with x,y,z,w nonnegative integers.

Examples

			a(1) = 1 with 1 = 0*(3*0+1) + 0*(3*0-1) + 0*(3*0+2) + 1*(3*1-2).
a(3) = 1 with 3 = 0*(3*0+1) + 1*(3*1-1) + 0*(3*0+2) + 1*(3*1-2).
a(4) = 1 with 4 = 1*(3*1+1) + 0*(3*0-1) + 0*(3*0+2) + 0*(3*0-2).
a(9) = 1 with 9 = 1*(3*1+1) + 0*(3*0-1) + 1*(3*1+2) + 0*(3*0-2).
a(13) = 1 with 13 = 0*(3*0+1) + 0*(3*0-1) + 1*(3*1+2) + 2*(3*2-2).
		

Crossrefs

Programs

  • Mathematica
    OctQ[n_]:=OctQ[n]=IntegerQ[Sqrt[3n+1]]&&(n==0||Mod[Sqrt[3n+1]+1,3]==0);
    tab={};Do[r=0;Do[If[OctQ[n-x(3x+2)-y(3y+1)-z(3z-1)],r=r+1],{x,0,(Sqrt[3n+1]-1)/3},{y,0,(Sqrt[12(n-x(3x+2))+1]-1)/6},{z,0,(Sqrt[12(n-x(3x+2)-y(3y+1))+1]+1)/6}];tab=Append[tab,r],{n,0,80}];Print[tab]

A309805 Maximum number of nonattacking kings placeable on a hexagonal board with edge-length n in Glinski's hexagonal chess.

Original entry on oeis.org

1, 2, 7, 10, 19, 24, 37, 44, 61, 70, 91, 102, 127, 140, 169, 184, 217, 234, 271, 290, 331, 352, 397, 420, 469, 494, 547, 574, 631, 660, 721, 752, 817, 850, 919, 954, 1027, 1064, 1141, 1180, 1261, 1302, 1387, 1430, 1519, 1564, 1657, 1704, 1801, 1850, 1951, 2002
Offset: 1

Views

Author

Sangeet Paul, Aug 17 2019

Keywords

Examples

			a(1) = 1
.
  o
.
a(2) = 2
.
   . .
  o . o
   . .
.
a(3) = 7
.
    o . o
   . . . .
  o . o . o
   . . . .
    o . o
.
a(4) = 10
.
     . . . .
    o . o . o
   . . . . . .
  o . o . o . o
   . . . . . .
    o . o . o
     . . . .
.
		

Crossrefs

Partial sums of A133090.

Programs

  • Mathematica
    nn:=51; CoefficientList[Series[- (1 + x + 3*x^2 + x^3)/((- 1 + x)^3*(1 + x)^2),{x, 0, nn}], x] (* Georg Fischer, May 10 2020 *)
  • PARI
    a(n) = n^2 - (n\2) - (n\2)^2; \\ Andrew Howroyd, Aug 17 2019
    
  • Python
    def A309805(n): return n**2-(m:=n>>1)*(m+1) # Chai Wah Wu, Apr 04 2024

Formula

a(n) = n^2 - floor(n/2) - floor(n/2)^2.
From Stefano Spezia, Aug 18 2019 (Start)
G.f.: - (1 + x + 3*x^2 + x^3)/((- 1 + x)^3*(1 + x)^2).
E.g.f.: (1/8)*exp(-x)*(-1 + 2*x + exp(2*x)*(1 + 4*x + 6*x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 5.
a(n) = (1/16)*(3 + (-1)^(1+2*n) - 4*n + 12*n^2 - 2*(-1)^n*(1 + 2*n)).
a(2*n-1) = A003215(n).
a(2*n) = A049450(n).
(End)

A064046 Number of length 6 walks on an n-dimensional hypercubic lattice starting and finishing at the origin and staying in the nonnegative part.

Original entry on oeis.org

0, 5, 70, 285, 740, 1525, 2730, 4445, 6760, 9765, 13550, 18205, 23820, 30485, 38290, 47325, 57680, 69445, 82710, 97565, 114100, 132405, 152570, 174685, 198840, 225125, 253630, 284445, 317660, 353365, 391650, 432605, 476320, 522885, 572390
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Crossrefs

Numbers of walks of length 0, 1, 2, 3, 4 and 5 are A000012, A000004, A001477, A000004, A049450 and A000004.

Programs

  • Magma
    [5*n*(3*n^2-3*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,5,70,285},40] (* Harvey P. Dale, Dec 02 2012 *)

Formula

a(n) = 5*n*(3*n^2 - 3*n + 1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A064045(n, 3).
a(n) = a(n-1) + 15*A049450(n-1) + 30*A001477(n-1) + 5*A000012(n-1).
G.f.: 5*x*(7*x^2 + 10*x + 1)/(x-1)^4. [Colin Barker, Jul 21 2012]

A153780 10 times pentagonal numbers: a(n) = 5*n*(3*n-1).

Original entry on oeis.org

0, 10, 50, 120, 220, 350, 510, 700, 920, 1170, 1450, 1760, 2100, 2470, 2870, 3300, 3760, 4250, 4770, 5320, 5900, 6510, 7150, 7820, 8520, 9250, 10010, 10800, 11620, 12470, 13350, 14260, 15200, 16170, 17170, 18200, 19260, 20350
Offset: 0

Views

Author

Omar E. Pol, Jan 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[5*n*(3*n - 1), {n,0,25}] (* or *) LinearRecurrence[{3,-3,1},{0,10,50},25] (* G. C. Greubel, Aug 28 2016 *)
  • PARI
    a(n) = 5*n*(3*n-1); \\ Michel Marcus, Aug 28 2016

Formula

a(n) = 15*n^2 - 5*n = 10*A000326(n) = 5*A049450(n) = 2*A152734(n).
a(n) = 30*n + a(n-1) - 20 for n>0, a(0) = 0. - Vincenzo Librandi, Aug 03 2010
G.f.: 10*x*(1+2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
From G. C. Greubel, Aug 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: 5*x*(2 + 3*x)*exp(x). (End)

A238377 Row sums of triangle in A204028.

Original entry on oeis.org

1, 2, 6, 10, 17, 24, 34, 44, 57, 70, 86, 102, 121, 140, 162, 184, 209, 234, 262, 290, 321, 352, 386, 420, 457, 494, 534, 574, 617, 660, 706, 752, 801, 850, 902, 954, 1009, 1064, 1122, 1180
Offset: 0

Views

Author

Philippe Deléham, Feb 25 2014

Keywords

Examples

			Triangle in A204028 begins:
  1;............................sum = 1
  1, 1;.........................sum = 2
  1, 4, 1;......................sum = 6
  1, 4, 4, 1;...................sum = 10
  1, 4, 7, 4, 1;................sum = 17
  1, 4, 7, 7, 4, 1;.............sum = 24
  1, 4, 7, 10, 7, 4, 1;.........sum = 34
  1, 4, 7, 10, 10, 7, 4, 1;.....sum = 44
		

Crossrefs

Formula

G.f.: (1+2*x^2)/((1+x)*(1-x)^3).
a(2*n) = A056109(n).
a(2*n+1) = A049450(n+1) = 2*A000326(n+1).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), a(0) = 1, a(1) = 2, a(2) = 6, a(3) = 10.

Extensions

Corrected by R. J. Mathar, Aug 08 2015

A272104 Sum of the even numbers among the larger parts of the partitions of n into two parts.

Original entry on oeis.org

0, 0, 0, 2, 2, 4, 4, 10, 10, 14, 14, 24, 24, 30, 30, 44, 44, 52, 52, 70, 70, 80, 80, 102, 102, 114, 114, 140, 140, 154, 154, 184, 184, 200, 200, 234, 234, 252, 252, 290, 290, 310, 310, 352, 352, 374, 374, 420, 420, 444, 444, 494, 494, 520, 520, 574, 574, 602
Offset: 0

Views

Author

Wesley Ivan Hurt, Apr 20 2016

Keywords

Comments

Essentially, repeated values of A152749.
Sum of the lengths of the distinct rectangles with even length and integer width such that L + W = n, W <= L. For example, a(10) = 14; the rectangles are 2 X 8 and 4 X 6, so 8 + 6 = 14. - Wesley Ivan Hurt, Nov 04 2017

Examples

			a(5) = 4; the partitions of 5 into 2 parts are (4,1),(3,2) and the sum of the larger even parts is 4.
a(6) = 4; the partitions of 6 into 2 parts are (5,1),(4,2),(3,3) and the sum of the larger even parts is also 4.
		

Crossrefs

Programs

  • Magma
    [(1+3*(2*n-3-(-1)^n)/2+3*(2*n-3-(-1)^n)^2/8+(2*n-1-(-1)^n)*(-1)^((2*n+1-(-1)^n) div 4)/2)/8 : n in [0..50]];
    
  • Maple
    A272104:=n->(1+3*(2*n-3-(-1)^n)/2+3*(2*n-3-(-1)^n)^2/8+(2*n-1-(-1)^n)*(-1)^((2*n+1-(-1)^n)/4)/2)/8: seq(A272104(n), n=0..100);
  • Mathematica
    Table[(1 + 3(2n-3-(-1)^n)/2 + 3(2n-3-(-1)^n)^2/8 + (2n-1-(-1)^n) * (-1)^((2n+1-(-1)^n)/4)/2) / 8, {n, 0, 50}]
    Table[Total@ Map[First, IntegerPartitions[n, {2}] /. {k_, } /; OddQ@ k -> Nothing], {n, 0, 57}] (* _Michael De Vlieger, Apr 20 2016, Version 10.2 *)
  • PARI
    concat(vector(3), Vec(2*x^3*(1-x+x^2)*(1+x+x^2)/((1-x)^3*(1+x)^2*(1+x^2)^2) + O(x^50))) \\ Colin Barker, Apr 20 2016

Formula

a(n) = (1 + 3*(2n-3-(-1)^n)/2 + 3*(2n-3-(-1)^n)^2/8 + (2n-1-(-1)^n) * (-1)^((2n+1-(-1)^n)/4)/2) / 8.
a(n) = Sum_{i=ceiling(n/2)..n-1} i * (i+1 mod 2).
a(n) = Sum_{i=1..floor(n/2)} (n-i) * (n-i+1 mod 2).
a(2n+1) = a(2n+2) = A152749(n) = 2*A001318(n).
G.f.: 2*x^3*(1-x+x^2)*(1+x+x^2) / ((1-x)^3*(1+x)^2*(1+x^2)^2). - Colin Barker, Apr 20 2016
From Wesley Ivan Hurt, Apr 22 2016, Apr 23 2016: (Start)
a(2n+2)-a(2n) = A109043(n) = 2*A026741(n).
a(4n) = A049450(n) = 2*A000326(n),
a(8n) = A126964(n) = 2*A049452(n),
a(12n) = 2*A268351(n).
a(n+1) = A001318(n) - A272212(n+1). (End)
E.g.f.: ((2 + 3*x*(1 + x))*cosh(x) - 2*(cos(x) + x*cos(x) + x*sin(x)) + (-1 + 3*(-1 + x)*x)*sinh(x))/16. - Ilya Gutkovskiy, Apr 29 2016
Previous Showing 31-40 of 48 results. Next