cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A011915 a(n) = floor(n*(n-1)*(n-2)*(n-3)/5).

Original entry on oeis.org

0, 0, 0, 0, 4, 24, 72, 168, 336, 604, 1008, 1584, 2376, 3432, 4804, 6552, 8736, 11424, 14688, 18604, 23256, 28728, 35112, 42504, 51004, 60720, 71760, 84240, 98280, 114004, 131544, 151032, 172608, 196416, 222604, 251328, 282744, 317016, 354312
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form floor(24*binomial(n,4)/m): A052762 (m=1), A033486 (m=2), A162668 (m=3), A033487 (m=4), this sequence (m=5), A033488 (m=6), A011917 (m=7), A050534 (m=8), A011919 (m=9), 2*A011930 (m=10), A011921 (m=11), A034827 (m=12), A011923 (m=13), A011924 (m=14), A011925 (m=15), A011926 (m=16), A011927 (m=17), A011928 (m=18), A011929 (m=19), A011930 (m=20), A011931 (m=21), A011932 (m=22), A011933 (m=23), A000332 (m=24), A011935 (m=25),A011936 (m=26), A011937 (m=27), A011938 (m=28), A011939 (m=29), A011940 (m=30), A011941 (m=31), A011942 (m=32), A011795 (m=120).

Programs

  • Magma
    [Floor(n*(n-1)*(n-2)*(n-3)/5): n in [0..60]]; // Vincenzo Librandi, Jun 19 2012
    
  • Mathematica
    Table[Floor[n(n-1)(n-2)(n-3)/5], {n,60}] (* Stefan Steinerberger, Apr 10 2006 *)
    CoefficientList[Series[4*x^4*(1+2*x+2*x^3+x^4)/((1-x)^4*(1+x^5)),{x,0,60}],x] (* Vincenzo Librandi, Jun 19 2012 *)
  • SageMath
    [24*binomial(n,4)//5 for n in range(61)] # G. C. Greubel, Oct 20 2024

Formula

a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) -4*a(n-6) +6*a(n-7) -4*a(n-8) +a(n-9).
G.f.: 4*x^4*(1+2*x+2*x^3+x^4) / ( (1-x)^5*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Apr 15 2010
a(n) = 4*A011930(n). - G. C. Greubel, Oct 20 2024

Extensions

More terms from Stefan Steinerberger, Apr 10 2006
Zero added in front by R. J. Mathar, Apr 15 2010

A325006 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 3, 0, 0, 10, 15, 1, 0, 0, 15, 45, 20, 0, 0, 0, 21, 105, 120, 15, 0, 0, 0, 28, 210, 455, 210, 6, 0, 0, 0, 36, 378, 1330, 1365, 252, 1, 0, 0, 0, 45, 630, 3276, 5985, 3003, 210, 0, 0, 0, 0, 55, 990, 7140, 20475, 20349, 5005, 120, 0, 0, 0, 0, 66, 1485, 14190, 58905, 98280, 54264, 6435, 45, 0, 0, 0, 0
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
0 1 3  6  10   15     21       28        36         45          55 ...
0 0 3 15  45  105    210      378       630        990        1485 ...
0 0 1 20 120  455   1330     3276      7140      14190       26235 ...
0 0 0 15 210 1365   5985    20475     58905     148995      341055 ...
0 0 0  6 252 3003  20349    98280    376992    1221759     3478761 ...
0 0 0  1 210 5005  54264   376740   1947792    8145060    28989675 ...
0 0 0  0 120 6435 116280  1184040   8347680   45379620   202927725 ...
0 0 0  0  45 6435 203490  3108105  30260340  215553195  1217566350 ...
0 0 0  0  10 5005 293930  6906900  94143280  886163135  6358402050 ...
0 0 0  0   1 3003 352716 13123110 254186856 3190187286 29248649430 ...
For a(2,3)=3, each chiral pair consists of two adjacent edges of the square with one of the three colors.
		

Crossrefs

Cf. A325004 (oriented), A325005 (unoriented), A325007 (achiral), A325010 (exactly k colors)
Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325014 (orthoplex)
Rows 1-3 are A161680, A050534, A093566(n+1), A234249(n-1)

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+1,2],n],{d,1,12},{n,1,d}] // Flatten
  • PARI
    a(n, k) = binomial(binomial(k, 2), n)
    array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
    /* Print initial 10 rows and 11 columns of array as follows: */
    array(10, 11) \\ Felix Fröhlich, May 30 2019

Formula

A(n,k) = binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2*n} A325010(n,j) * binomial(k,j).
A(n,k) = A325004(n,k) - A325005(n,k) = (A325004(n,k) - A325007(n,k)) / 2 = A325005(n,k) - A325007(n,k).
G.f. for row n: Sum{j=1..2*n} A325010(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).
G.f. for column k: (1+x)^binomial(k,2) - 1.

A194136 T(n,k) = number of ways to arrange k indistinguishable points on an n X n X n triangular grid so that no three points are collinear at any angle.

Original entry on oeis.org

1, 0, 3, 0, 3, 6, 0, 1, 15, 10, 0, 0, 17, 45, 15, 0, 0, 6, 105, 105, 21, 0, 0, 0, 114, 407, 210, 28, 0, 0, 0, 39, 843, 1216, 378, 36, 0, 0, 0, 1, 792, 4122, 3036, 630, 45, 0, 0, 0, 0, 244, 7587, 14988, 6696, 990, 55, 0, 0, 0, 0, 9, 6480, 43836, 45414, 13428, 1485, 66, 0, 0, 0, 0
Offset: 1

Views

Author

R. H. Hardin, Aug 17 2011

Keywords

Comments

Table starts
...1....0......0.......0.........0..........0...........0............0
...3....3......1.......0.........0..........0...........0............0
...6...15.....17.......6.........0..........0...........0............0
..10...45....105.....114........39..........1...........0............0
..15..105....407.....843.......792........244...........9............0
..21..210...1216....4122......7587.......6480........1875...........78
..28..378...3036...14988.....43836......69798.......52323........14268
..36..630...6696...45414....194013.....496198......695616.......464934
..45..990..13428..119340....696765....2595897.....5840088......7278867
..55.1485..25005..281442...2145687...10912452....35715529.....71089536
..66.2145..43861..608616...5851044...38739354...172520643....496946172
..78.3003..73277.1228812..14546412..121694240...708871152...2796515883
..91.4095.117471.2338779..33347130..342722071..2517687856..12966188538
.105.5460.181880.4240284..71662911..887407361..8023634766..52262929401
.120.7140.273268.7371414.145616964.2136513884.23292994812.187041426756

Examples

			Some solutions for n=4, k=4:
.....1........0........1........0........0........0........0........0
....0.0......1.1......1.0......0.1......1.1......1.0......1.1......0.1
...0.1.0....0.0.1....0.0.0....1.0.0....1.0.0....1.0.1....1.1.0....1.1.0
..1.0.0.1..1.0.0.0..0.1.1.0..0.1.0.1..0.0.1.0..0.0.1.0..0.0.0.0..0.0.0.1
		

Crossrefs

Column 1 is A000217.
Column 2 is A050534.

A234249 Number of ways to choose 4 points in an n X n X n triangular grid.

Original entry on oeis.org

15, 210, 1365, 5985, 20475, 58905, 148995, 341055, 720720, 1426425, 2672670, 4780230, 8214570, 13633830, 21947850, 34389810, 52602165, 78738660, 115584315, 166695375, 236561325, 330791175, 456326325, 621682425, 837222750, 1115465715, 1471429260, 1923014940
Offset: 3

Views

Author

Heinrich Ludwig, Feb 02 2014

Keywords

Comments

Sequence is column #5 of A084546: a(n) = A084546(n+1, 4).
All elements of the sequence are multiples of 15.
a(n-1) is the number of chiral pairs of colorings of the 8 cubic facets of a tesseract (hypercube) with Schläfli symbol {4,3,3} or of the 8 vertices of a hyperoctahedron with Schläfli symbol {3,3,4}. Both figures are regular 4-D polyhedra and they are mutually dual. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020

Crossrefs

Cf. A084546, A050534 (number of ways to choose 2 points), A093566 (3 points), A231653.
Cf. A337956 (oriented), A337956 (unoriented), A337956 (achiral) colorings, A331356 (hyperoctahedron edges, tesseract faces), A331360 (hyperoctahedron faces, tesseract edges), A337954 (hyperoctahedron facets, tesseract vertices).
Other polychora: A000389 (5-cell), A338950 (24-cell), A338966 (120-cell, 600-cell).
Row 4 of A325006 (orthotope facets, orthoplex vertices).

Programs

  • Maple
    A234249:=n->n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384: seq(A234249(n), n=3..40); # Wesley Ivan Hurt, Jan 10 2017
  • Mathematica
    Table[Binomial[Binomial[n,2],4], {n,4,30}] (* Robert A. Russell, Oct 20 2020 *)
  • PARI
    Vec(-15*x^3*(x^2+5*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Feb 02 2014

Formula

a(n) = n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384.
a(n) = C(C(n + 1, 2), 4).
G.f.: -15*x^3*(x^2+5*x+1) / (x-1)^9. - Colin Barker, Feb 02 2014
From Robert A. Russell, Oct 20 2020: (Start)
a(n-1) = 15*C(n,4) + 135*C(n,5) + 330*C(n,6) + 315*C(n,7) + 105*C(n,8), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n-1) = A337956(n) - A337957(n) = (A337956(n) - A337958(n)) / 2 = A337957(n) - A337958(n).
a(n-1) = A325006(4,n). (End)

A241765 a(n) = n*(n + 1)*(n + 2)*(3*n + 17)/24.

Original entry on oeis.org

0, 5, 23, 65, 145, 280, 490, 798, 1230, 1815, 2585, 3575, 4823, 6370, 8260, 10540, 13260, 16473, 20235, 24605, 29645, 35420, 41998, 49450, 57850, 67275, 77805, 89523, 102515, 116870, 132680, 150040, 169048, 189805, 212415, 236985, 263625, 292448
Offset: 0

Views

Author

Bruno Berselli, Apr 28 2014

Keywords

Comments

Equivalently, Sum_{i=0..n} (i+4)*A000217(i).
Sequences of the type Sum_{i=0..n} (i+k)*A000217(i):
k = 0, A001296: 0, 1, 7, 25, 65, 140, 266, 462, ...
k = 1, A000914: 0, 2, 11, 35, 85, 175, 322, 546, ...
k = 2, A050534: 0, 3, 15, 45, 105, 210, 378, 630, ... (deleting two 0)
k = 3, A215862: 0, 4, 19, 55, 125, 245, 434, 714, ...
k = 4, a(n): 0, 5, 23, 65, 145, 280, 490, 798, ...
k = 5, A239568: 0, 6, 27, 75, 165, 315, 546, 882, ...
Antidiagonal sums (without 0) give A034263: 1, 9, 39, 119, 294, ...
Diagonal: 1, 11, 45, 125, 280, 546, ... is A051740.
Also: k = -1 gives A050534 deleting a 0; k = -2 gives 0 followed by A059302.
After 0, partial sums of A212343 and third column of A118788.
This sequence is even related to A005286 by a(n) = n*A005286(n) - Sum_{i=0..n-1} A005286(i).

Examples

			a(7) = 4*0 + 5*1 + 6*3 + 7*6 + 8*10 + 9*15 + 10*21 + 11*28 = 798.
		

Crossrefs

Cf. similar sequences A000914, A001296, A050534, A059302, A215862, A239568 (see table in Comments lines).

Programs

  • Magma
    /* By first comment: */ k:=4; A000217:=func; [&+[(i+k)*A000217(i): i in [0..n]]: n in [0..40]];
    
  • Maple
    A241765:=n->n*(n + 1)*(n + 2)*(3*n + 17)/24; seq(A241765(n), n=0..40); # Wesley Ivan Hurt, May 09 2014
  • Mathematica
    Table[n (n + 1) (n + 2) (3 n + 17)/24, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 23, 65, 145}, 40]
    CoefficientList[Series[x (5 - 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
  • Maxima
    makelist(coeff(taylor(x*(5-2*x)/(1-x)^5, x, 0, n), x, n), n, 0, 40);
    
  • PARI
    a(n)=n*(n+1)*(n+2)*(3*n+17)/24 \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(5-2*x)/(1-x)^5)) \\ Altug Alkan, Apr 10 2016
  • Sage
    [n*(n+1)*(n+2)*(3*n+17)/24 for n in (0..40)]
    

Formula

G.f.: x*(5 - 2*x)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A227342(A055998(n+1)).
a(n) = Sum_{j=0..n+2} (-1)^(n-j)*binomial(-j,-n-2)*S1(j,n), S1 Stirling cycle numbers A132393. - Peter Luschny, Apr 10 2016

A325014 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 3, 1, 0, 10, 15, 66, 94, 0, 15, 45, 920, 97974, 1047816, 0, 21, 105, 6350, 10700090, 481141220994, 400140831558512, 0, 28, 210, 29505, 390081800, 4802390808840576, 74515656021475803734579625, 527471421741473576372948457251328, 0
Offset: 1

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with A(1,1):
0  1     3        6        10         15          21           28 ...
0  0     3       15        45        105         210          378 ...
0  1    66      920      6350      29505      106036       317856 ...
0 94 97974 10700090 390081800 7280687610 86121007714 730895668104 ...
For A(2,3)=3, each square has one of the three colors on two adjacent edges.
		

Crossrefs

Cf. A325012 (oriented), A325013 (unoriented), A325015 (achiral), A325018 (exactly k colors).
Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325006 (orthotope).
Rows 1-2 are A161680, A050534.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[((CI0[#] - CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
A(k,n) = A325012(n,k) - A325013(n,k) = (A325012(n,k) - A325015(n,k)) / 2 = A325013(n,k) - A325015(n,k).
A(n,k) = Sum_{j=2..2^n} A325018(n,j) * binomial(k,j).

A144151 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) = number of ways an undirected cycle of length k can be built from n labeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 3, 1, 5, 10, 10, 15, 12, 1, 6, 15, 20, 45, 72, 60, 1, 7, 21, 35, 105, 252, 420, 360, 1, 8, 28, 56, 210, 672, 1680, 2880, 2520, 1, 9, 36, 84, 378, 1512, 5040, 12960, 22680, 20160, 1, 10, 45, 120, 630, 3024, 12600, 43200, 113400, 201600, 181440
Offset: 0

Author

Alois P. Heinz, Sep 12 2008

Keywords

Examples

			T(4,3) = 4, because 4 undirected cycles of length 3 can be built from 4 labeled nodes:
  .1.2. .1.2. .1-2. .1-2.
  ../|. .|\.. ..\|. .|/..
  .3-4. .3-4. .3.4. .3.4.
Triangle begins:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  3,  1;
  1, 4,  6,  4,  3;
  1, 5, 10, 10, 15, 12;
  ...
		

Crossrefs

Columns 0-4 give: A000012, A000027, A000217, A000292, A050534.
Diagonal gives: A001710.
Row sums are in A116723. - Alois P. Heinz, Jun 01 2009
Excluding columns k=0,1,and 2 the row sums are A002807. - Geoffrey Critzer, Jul 22 2016
Cf. A284947 (k-cycle counts for k >= 3 in the complete graph K_n). - Eric W. Weisstein, Apr 06 2017
T(2n,n) gives A006963(n+1) for n>=3.

Programs

  • Maple
    T:= (n,k)-> if k<=2 then binomial(n,k) else mul(n-j, j=0..k-1)/k/2 fi:
    seq(seq(T(n,k), k=0..n), n=0..12);
  • Mathematica
    t[n_, k_ /; k <= 2] := Binomial[n, k]; t[n_, k_] := Binomial[n, k]*(k-1)!/2; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2013 *)
    CoefficientList[Table[1 + n x (2 + (n - 1) x + 2 HypergeometricPFQ[{1, 1, 1 - n}, {2}, -x])/4, {n, 0, 10}], x] (* Eric W. Weisstein, Apr 06 2017 *)

Formula

T(n,k) = C(n,k) if k<=2, else T(n,k) = C(n,k)*(k-1)!/2.
E.g.f.: exp(x)*(log(1/(1 - y*x))/2 + 1 + y*x/2 + (y*x)^2/4). - Geoffrey Critzer, Jul 22 2016

A337409 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the edges of a regular n-dimensional orthotope (hypercube) using k or fewer colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 74, 0, 0, 15, 10704, 11158298, 0, 0, 45, 345640, 4825452718593, 314824408633217132928, 0, 0, 105, 5062600, 48038354542204960, 38491882659952177472606694634030116, 136221825854745676076981182469325427379054390050209792, 0
Offset: 1

Author

Robert A. Russell, Aug 26 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is a cube with 12 edges. The number of edges is n*2^(n-1).
Also the number of chiral pairs of colorings of the regular (n-2)-dimensional simplexes in a regular n-dimensional orthoplex.

Examples

			Table begins with T(1,1):
0  0     0      0       0        0         0          0          0 ...
0  0     3     15      45      105       210        378        630 ...
0 74 10704 345640 5062600 45246810 288005144 1430618784 5881281480 ...
For T(2,3)=3, the chiral arrangements are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
		

Crossrefs

Cf. A337407 (oriented), A337408 (unoriented), A337410 (achiral).
Rows 2-4 are A050534, A337406, A331360.
Cf. A327085 (simplex edges), A337413 (orthoplex edges), A325014 (orthotope vertices).

Programs

  • Mathematica
    m=1; (* dimension of color element, here an edge *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1+2x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n-m]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],1,-1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,7}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337407(n,k) - A337408(n,k) = (A337407(n,k) - A337410(n,k)) / 2 = A337408(n,k) - A337410(n,k).

A337413 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 74, 0, 0, 15, 10704, 40927, 0, 0, 45, 345640, 731279799, 280317324, 0, 0, 105, 5062600, 732272925320, 3163614120031068, 24869435516248, 0, 0, 210, 45246810, 155180061396500, 314800331906964016128, 919853357924272852197243, 29931599129719666392, 0
Offset: 1

Author

Robert A. Russell, Aug 26 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is an octahedron with 12 edges. The number of edges is 2n*(n-1) for n>1.
Also the number of chiral pairs of colorings of the regular (n-2)-dimensional orthotopes (hypercubes) in a regular n-dimensional orthotope.

Examples

			Table begins with T(1,1):
0  0     0      0       0        0         0          0          0 ...
0  0     3     15      45      105       210        378        630 ...
0 74 10704 345640 5062600 45246810 288005144 1430618784 5881281480 ...
For T(2,3)=3, the chiral arrangements are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
		

Crossrefs

Cf. A337411 (oriented), A337412 (unoriented), A337414 (achiral).
Rows 2-4 are A050534, A337406, A331356.
Cf. A327085 (simplex edges), A337409 (orthotope edges), A325006 (orthoplex vertices).

Programs

  • Mathematica
    m=1; (* dimension of color element, here an edge *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],1,-1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337411(n,k) - A337412(n,k) = (A337411(n,k) - A337414(n,k)) / 2 = A337412(n,k) - A337414(n,k).

A193986 T(n,k) is the number of ways to arrange k nonattacking triangular rooks on an nXnXn triangular grid.

Original entry on oeis.org

1, 0, 3, 0, 0, 6, 0, 0, 3, 10, 0, 0, 0, 15, 15, 0, 0, 0, 2, 45, 21, 0, 0, 0, 0, 23, 105, 28, 0, 0, 0, 0, 0, 127, 210, 36, 0, 0, 0, 0, 0, 18, 468, 378, 45, 0, 0, 0, 0, 0, 0, 233, 1352, 630, 55, 0, 0, 0, 0, 0, 0, 6, 1449, 3310, 990, 66, 0, 0, 0, 0, 0, 0, 0, 270, 6213, 7190, 1485, 78, 0, 0, 0, 0
Offset: 1

Author

R. H. Hardin, Aug 10 2011

Keywords

Comments

Empirical: minimum-n nonzero T(n,k) is at n=k+floor(k/2) and this T(k+floor(k/2),k) is A002047((k-1)/2) for k odd
Table starts
...1....0......0.......0........0........0.........0.........0........0.......0
...3....0......0.......0........0........0.........0.........0........0.......0
...6....3......0.......0........0........0.........0.........0........0.......0
..10...15......2.......0........0........0.........0.........0........0.......0
..15...45.....23.......0........0........0.........0.........0........0.......0
..21..105....127......18........0........0.........0.........0........0.......0
..28..210....468.....233........6........0.........0.........0........0.......0
..36..378...1352....1449......270........0.........0.........0........0.......0
..45..630...3310....6213.....3195......166.........0.........0........0.......0
..55..990...7190...20993....21273.....4902........28.........0........0.......0
..66.1485..14260...59943...101484....54771......4842.........0........0.......0
..78.2145..26330..150903...386052...382439....104448......2532........0.......0
..91.3003..45885..344323..1243899..1976455...1127473....140598......244.......0
.105.4095..76237..726033..3527469..8250687...8147469...2568288...120052.......0
.120.5460.121688.1434678..9035376.29309540..44813100..27060693..4373740...49620
.136.7140.187712.2685046.21297492.91705972.201616740.200826477.71690568.5227020

Examples

			Some solutions for n=5 k=3
......0..........0..........0..........0..........1..........0..........0
.....0.0........0.0........0.0........0.1........0.0........0.0........0.1
....0.1.0......0.0.1......1.0.0......0.0.0......0.0.0......1.0.0......1.0.0
...0.0.0.1....1.0.0.0....0.0.1.0....0.0.1.0....0.1.0.0....0.0.1.0....0.0.1.0
..0.0.1.0.0..0.0.0.1.0..0.1.0.0.0..1.0.0.0.0..0.0.0.1.0..0.0.0.0.1..0.0.0.0.0
		

Crossrefs

Row sums plus 1 give A289709.
Column 1 is A000217.
Column 2 is A050534.
Previous Showing 11-20 of 54 results. Next