cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 54 results. Next

A033486 a(n) = n*(n + 1)*(n + 2)*(n + 3)/2.

Original entry on oeis.org

0, 12, 60, 180, 420, 840, 1512, 2520, 3960, 5940, 8580, 12012, 16380, 21840, 28560, 36720, 46512, 58140, 71820, 87780, 106260, 127512, 151800, 179400, 210600, 245700, 285012, 328860, 377580, 431520, 491040, 556512, 628320, 706860, 792540, 885780, 987012
Offset: 0

Views

Author

Keywords

Comments

a(n) is the area of an irregular quadrilateral with vertices at (1,1), (n+1, n+2), ((n+1)^2, (n+2)^2) and ((n+1)^3, (n+2)^3). - Art Baker, Dec 08 2018

Crossrefs

Programs

  • GAP
    List([0..40],n->n*(n+1)*(n+2)*(n+3)/2); # Muniru A Asiru, Dec 08 2018
    
  • Magma
    [n*(n+1)*(n+2)*(n+3)/2: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
    
  • Maple
    [seq(12*binomial(n+3,4),n=0..32)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    Table[n*(n + 1)*(n + 2)*(n + 3)/2, {n, 0, 50}] (* David Nacin, Mar 01 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,12,60,180,420},40] (* Harvey P. Dale, Feb 04 2015 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(n+3)/2 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [12*binomial(n+3,4) for n in range(40)] # G. C. Greubel, Dec 08 2018

Formula

a(n) = 6*A034827(n+3) = 12*A000332(n+3).
G.f.: 12*x/(1 - x)^5. - Colin Barker, Mar 01 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) with a(0) = 0, a(1) = 12, a(2) = 60, a(3) = 180, a(4) = 420. - Harvey P. Dale, Feb 04 2015
E.g.f.: (24*x + 36*x^2 + 12*x^3 + x^4)*exp(x)/2. - Franck Maminirina Ramaharo, Dec 08 2018
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*(3*log(2)-2)/9. (End)

A194480 T(n,k) = number of ways to arrange k indistinguishable points on an n X n X n triangular grid so that no three points are in the same row or diagonal.

Original entry on oeis.org

1, 0, 3, 0, 3, 6, 0, 1, 15, 10, 0, 0, 17, 45, 15, 0, 0, 6, 105, 105, 21, 0, 0, 0, 114, 410, 210, 28, 0, 0, 0, 39, 879, 1225, 378, 36, 0, 0, 0, 1, 909, 4284, 3066, 630, 45, 0, 0, 0, 0, 337, 8568, 15729, 6762, 990, 55, 0, 0, 0, 0, 15, 8733, 50526, 47565, 13560, 1485, 66, 0, 0, 0
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Table starts
...1....0......0........0.........0..........0...........0............0
...3....3......1........0.........0..........0...........0............0
...6...15.....17........6.........0..........0...........0............0
..10...45....105......114........39..........1...........0............0
..15..105....410......879.......909........337..........15............0
..21..210...1225.....4284......8568.......8733........3525..........285
..28..378...3066....15729.....50526......96478.......98473........43713
..36..630...6762....47565....221508.....668028.....1237434......1279905
..45..990..13560...124803....789453....3413828.....9821400.....17860056
..55.1485..25245...293733...2412333...14054915....57367112....159352995
..66.2145..44275...634293...6542316...49171641...268378248...1046727933
..78.3003..73931..1277133..16127397..151422970..1059987987...5488359255
..91.4095.118482..2426424..36762726..420674150..3661533037..24183257037
.105.5460.183365..4389567..78495417.1073422309.11341971885..92740471038
.120.7140.275380..7615062.158548572.2550004472.32090198922.317395080927
.136.9180.402900.12739902.305303544.5699074284.84099053568.987664967535

Examples

			Some solutions for n=4, k=4:
.....1........0........0........0........0........0........1........1
....1.0......1.0......0.1......0.1......1.0......1.1......0.1......0.1
...0.1.0....1.0.1....0.1.0....0.0.1....0.1.1....0.1.0....1.1.0....0.1.0
..0.0.0.1..0.0.0.1..1.0.1.0..0.1.1.0..0.0.0.1..1.0.0.0..0.0.0.0..0.0.1.0
		

Crossrefs

Column 1 is A000217.
Column 2 is A050534(n+1).

Formula

Empirical: T(n,k) is a polynomial of degree 2k in n with lead coefficient 1/(2^k*k!) for k <= 5.
T(n,1) = (1/2)*n^2 + (1/2)*n
T(n,2) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,3) = (1/48)*n^6 + (1/16)*n^5 - (3/16)*n^4 + (1/48)*n^3 + (1/6)*n^2 - (1/12)*n
T(n,4) = (1/384)*n^8 + (1/96)*n^7 - (5/64)*n^6 + (13/240)*n^5 + (27/128)*n^4 - (23/96)*n^3 - (13/96)*n^2 + (7/40)*n
T(n,5) = (1/3840)*n^10 + (1/768)*n^9 - (7/384)*n^8 + (37/1920)*n^7 + (737/3840)*n^6 - (2347/3840)*n^5 + (101/192)*n^4 + (93/320)*n^3 - (7/10)*n^2 + (3/10)*n

A210569 a(n) = (n-3)*(n-2)*(n-1)*n*(n+1)/30.

Original entry on oeis.org

0, 0, 0, 0, 4, 24, 84, 224, 504, 1008, 1848, 3168, 5148, 8008, 12012, 17472, 24752, 34272, 46512, 62016, 81396, 105336, 134596, 170016, 212520, 263120, 322920, 393120, 475020, 570024, 679644, 805504, 949344, 1113024, 1298528, 1507968, 1743588, 2007768, 2303028
Offset: 0

Views

Author

Bruno Berselli, Mar 23 2012

Keywords

Comments

The following sequences are provided by the formula n*binomial(n,k) - binomial(n,k+1) = k*binomial(n+1,k+1):
. A000217(n) for k=1,
. A007290(n+1) for k=2,
. A050534(n) for k=3,
. a(n) for k=4,
. A000910(n+1) for k=5.
Sum of reciprocals of a(n), for n>3: 5/16.
From a(2), convolution of oblong numbers (A002378) with themselves. - Bruno Berselli, Oct 24 2016

Crossrefs

First differences are in A033488.

Programs

  • Magma
    [4*Binomial(n+1,5): n in [0..38]];
    
  • Maple
    f:=n->(n^5-5*n^3+4*n)/30;
    [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {0,0,0,0,4,24}, 39]
    CoefficientList[Series[4x^4/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
    Times@@@Partition[Range[-3,40],5,1]/30 (* Harvey P. Dale, Sep 19 2020 *)
  • Maxima
    makelist(coeff(taylor(4*x^4/(1-x)^6, x, 0, n), x, n), n, 0, 38);
    
  • PARI
    a(n)=(n-3)*(n-2)*(n-1)*n*(n+1)/30 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [4*binomial(n+1,5) for n in (0..40)] # G. C. Greubel, May 23 2022

Formula

G.f.: 4*x^4/(1-x)^6.
a(n) = n*binomial(n,4)-binomial(n,5) = 4*binomial(n+1,5) = 4*A000389(n+1).
a(n) = 2*A177747(2*n-7), with A177747(-7) = A177747(-5) = A177747(-3) = A177747(-1) = 0.
(n-4)*a(n) = (n+1)*a(n-1).
E.g.f.: (1/30)*x^4*(5+x)*exp(x). - G. C. Greubel, May 23 2022
Sum_{n>=4} (-1)^n/a(n) = 20*log(2) - 655/48. - Amiram Eldar, Jun 02 2022

A240439 Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle of any orientation. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 6, 15, 15, 3, 1, 10, 45, 105, 114, 39, 3, 1, 15, 105, 420, 969, 1194, 654, 102, 3, 1, 21, 210, 1260, 4773, 11259, 15615, 11412, 3663, 342, 15, 1, 28, 378, 3150, 17415, 64776, 159528, 250233, 234609, 119259, 28395, 2613, 69, 1, 36, 630, 6930
Offset: 1

Views

Author

Heinrich Ludwig, Apr 05 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 0 <= k <= A240114(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle is given by A240114(n).

Examples

			The triangle begins:
  1,  1;
  1,  3,   3;
  1,  6,  15,   15,    3;
  1, 10,  45,  105,  114,    39,     3;
  1, 15, 105,  420,  969,  1194,   654,   102,    3;
  1, 21, 210, 1260, 4773, 11259, 15615, 11412, 3663, 342, 15;
There are T(5, 8) = 3 ways to place 8 points (x) on a triangular grid of side 5 under the conditions mentioned above:
          .                x                x
         x x              x .              . x
        x . x            x . .            . . x
       x . . x          x . . .          . . . x
      x . . . x        . x x x x        x x x x .
		

Crossrefs

column 2 is A000217,
column 3 is A050534,
column 4 is A240440,
column 5 is A240441,
column 6 is A240442.

A053526 Number of bipartite graphs with 3 edges on nodes {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 16, 110, 435, 1295, 3220, 7056, 14070, 26070, 45540, 75790, 121121, 187005, 280280, 409360, 584460, 817836, 1124040, 1520190, 2026255, 2665355, 3464076, 4452800, 5666050, 7142850, 8927100, 11067966, 13620285
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.

Crossrefs

Column k=3 of A117279.
Cf. A000217 (1 edge), A050534 (2 edges).

Programs

  • GAP
    List([0..40], n-> Binomial(n,4)*(n^2+3*n+4)/2) # G. C. Greubel, May 15 2019
  • Magma
    [Binomial(n,4)*(n^2+3*n+4)/2: n in [0..40]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    Table[Binomial[n,4]*(n^2+3*n+4)/2, {n,0,40}] (* G. C. Greubel, May 15 2019 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,16,110,435},40] (* Harvey P. Dale, Nov 24 2022 *)
  • PARI
    {a(n) = binomial(n,4)*(n^2+3*n+4)/2}; \\ G. C. Greubel, May 15 2019
    
  • Sage
    [binomial(n,4)*(n^2+3*n+4)/2 for n in (0..40)] # G. C. Greubel, May 15 2019
    

Formula

a(n) = (n-3)*(n-2)*(n-1)*n*(n^2 + 3*n + 4)/48.
G.f.: x^4*(16-2*x+x^2)/(1-x)^7. - Colin Barker, May 08 2012
E.g.f.: x^4*(32 + 12*x + x^2)*exp(x)/48. - G. C. Greubel, May 15 2019

A060008 a(n) = 9*binomial(n,4) = 3n*(n-1)*(n-2)*(n-3)/8.

Original entry on oeis.org

0, 0, 0, 0, 9, 45, 135, 315, 630, 1134, 1890, 2970, 4455, 6435, 9009, 12285, 16380, 21420, 27540, 34884, 43605, 53865, 65835, 79695, 95634, 113850, 134550, 157950, 184275, 213759, 246645, 283185, 323640, 368280, 417384, 471240, 530145, 594405
Offset: 0

Views

Author

Henry Bottomley, Mar 16 2001

Keywords

Comments

Number of permutations of n letters where exactly four change position.

Examples

			a(6) = 135 since there are 15 ways to choose the four points that move and 9 ways to move them and 15*9 = 135.
		

Crossrefs

For changing 0, 1, 2, 3, 4, 5, n-4, n elements see A000012, A000004, A000217 (offset), A007290, A060008, A060836, A000475, A000166. Also see A000332, A008290.
A diagonal of A008291.

Programs

  • Mathematica
    9*Binomial[Range[0,40],4] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,0,0,0,9},40] (* Harvey P. Dale, Jun 09 2014 *)
  • PARI
    a(n) = { 3*n*(n - 1)*(n - 2)*(n - 3)/8 } \\ Harry J. Smith, Jul 01 2009

Formula

Equals 3*A050534. - Zerinvary Lajos, Feb 12 2007
G.f.: 9*x^4/(1-x)^5. - Colin Barker, Jul 02 2012
From Amiram Eldar, Jul 19 2022: (Start)
Sum_{n>=4} 1/a(n) = 4/27.
Sum_{n>=4} (-1)^n/a(n) = 32*log(2)/9 - 64/27. (End)

A117279 Triangle read by rows: T(n,k) is number of labeled bipartite graphs with n nodes and k edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 6, 15, 16, 3, 1, 10, 45, 110, 140, 60, 10, 1, 15, 105, 435, 1125, 1701, 1200, 480, 105, 10, 1, 21, 210, 1295, 5355, 14952, 26572, 26670, 17535, 7840, 2331, 420, 35, 1, 28, 378, 3220, 19075, 81228, 246414, 507424, 666015, 620900, 431368
Offset: 0

Views

Author

Vladeta Jovovic, Jun 23 2007

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,  1;
  1,  3,  3;
  1,  6, 15,  16,   3;
  1, 10, 45, 110, 140, 60, 10;
  ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.

Crossrefs

Row sums give A047864,
Columns k=1..5 are A000217(n-1), A050534, A053526, A053527, A053528.
The unlabeled version is A297877.

Programs

  • Mathematica
    nn=10;f[x_,y_]:=Sum[Sum[Binomial[n,k](1+y)^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Range[0,nn]!CoefficientList[Series[Exp[Log[f[x,y]]/2],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Sep 05 2013 *)
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(serlaplace(sqrt(sum(k=0, n, exp(x*(1+y)^k + O(x*x^n))*x^k/k! ))))]}
    { my(A=T(6)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 10 2022

Formula

E.g.f.: sqrt(Sum_{n>=0} exp(x*(1+q)^n)*x^n/n!).

A144228 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) = number of simple graphs on n labeled nodes with k edges where each maximally connected subgraph has at most one cycle.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 3, 1, 1, 6, 15, 20, 15, 1, 10, 45, 120, 210, 222, 1, 15, 105, 455, 1365, 2913, 3670, 1, 21, 210, 1330, 5985, 20139, 49294, 68820, 1, 28, 378, 3276, 20475, 97860, 362670, 976560, 1456875, 1, 36, 630, 7140, 58905, 376236, 1914276, 7663500, 22089870, 34506640
Offset: 0

Views

Author

Alois P. Heinz, Sep 15 2008

Keywords

Examples

			T(4,4) = 15, because there are 15 simple graphs on 4 labeled nodes with 4 edges where each maximally connected subgraph has at most one cycle:
  1-2  1-2  1-2  1-2  1-2  1-2  1 2  1 2  1-2  1 2  1 2  1-2  1-2  1-2  1 2
  |/|  |X   |/   |\|   X|   \|  |/|   X|   /|  |\|  |X   |\   | |   X   |X|
  4 3  4 3  4-3  4 3  4 3  4-3  4-3  4-3  4-3  4-3  4-3  4-3  4-3  4-3  4 3
Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  3,  3,   1;
  1,  6, 15,  20,  15;
  1, 10, 45, 120, 210, 222;
  ...
		

Crossrefs

Columns k=0-3 give: A000012, A000217, A050534, A093566.
Main diagonal gives A137916.
Row sums give: A133686.
T(2n,n) gives A369828.

Programs

  • Maple
    cy:= proc(n) option remember; local t; binomial(n-1, 2) *add((n-3)! /(n-2-t)! *n^(n-2-t), t=1..n-2) end: T:= proc(n,k) option remember; local j; if k=0 then 1 elif k<0 or n
    				
  • Mathematica
    t[, 0] = 1; t[n, k_] /; (k<0 || nJean-François Alcover, Jan 15 2014, after Maple *)

Formula

T(n,0) = 1, T(n,k) = 0 if k<0 or nA000272(j+1) T(n-j-1,k-j) + A057500(j+1) T(n-j-1,k-j-1)).
E.g.f.: exp(B(x,y)), where B(x,y) = Sum(Sum(A062734(n,k)*y^k*x^n/n!, k=0..n), n=1..infinity) = -1/2*log(1+LambertW(-x*y))+1/2*LambertW(-x*y) -1/4*LambertW(-x*y)^2-1/y *(LambertW(-x*y)+1/2 *LambertW(-x*y)^2). - Vladeta Jovovic, Sep 16 2008

A168641 Triangle read by rows: T(n,k) = [x^k] p(x,n), where p(x,n) = 3*(x + 1)^n - 2*(x^n + 1) - n*(x + x^(n - 1)) for n >= 2, p(x,0) = 1, and p(x,1) = x + 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 8, 18, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 45, 60, 45, 12, 1, 1, 14, 63, 105, 105, 63, 14, 1, 1, 16, 84, 168, 210, 168, 84, 16, 1, 1, 18, 108, 252, 378, 378, 252, 108, 18, 1, 1, 20, 135, 360, 630, 756, 630, 360, 135, 20, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  6,   6,   1;
  1,  8,  18,   8,   1;
  1, 10,  30,  30,  10,   1;
  1, 12,  45,  60,  45,  12,   1;
  1, 14,  63, 105, 105,  63,  14,   1;
  1, 16,  84, 168, 210, 168,  84,  16,  1;
  1, 18, 108, 252, 378, 378, 252, 108,  18,  1;
  1, 20, 135, 360, 630, 756, 630, 360, 135, 20, 1;
  ...
		

Crossrefs

Columns (essentially): A005843 (k=1), A045943 (k=2), A027480 (k=3), A050534 (k=4), A253942 (k=5), A253943 (k=6), A253944 (k=7).

Programs

  • Magma
    function f(n,k)
       if n le 2 then return 1;
       elif k eq 0 or k eq n then return 1;
       elif k eq 1 or k eq n-1 then return 2;
       else return 3;
       end if;
    end function;
    A168641:= func< n,k | Binomial(n,k)*f(n,k) >;
    [A168641(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 24 2025
    
  • Mathematica
    p[x_, n_]:= If[n==0, 1, If[n==1, 1+x, 3*(1+x)^n -(1+x^n) -(1+n*x +n*x^(n-1) + x^n)]];
    Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 10}]]
    (* Second program *)
    f[n_, k_]:= With[{b=Boole}, If[k<=n/2, b[k==0] +2*b[k==1] +3*b[2<=k<=n/2], f[n, n-k]]];
    A168641[n_, k_]:= Binomial[n,k]*If[n<3,1,f[n,k]];
    Table[A168641[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2025 *)
  • Maxima
    T(n,k) := ratcoef(if n <= 2 then (1 + x)^n else 3*(x + 1)^n - (x^n + 1) - (x^n + n*x^(n - 1) + n*x + 1), x, k);
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
    
  • SageMath
    def f(n,k):
        if (k<=n/2): return int(k==0) + 2*int(k==1) + 3*int(1A168641(n,k):
        if (n<3): return binomial(n,k)
        else: return binomial(n,k)*f(n,k)
    print(flatten([[A168641(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 24 2025

Formula

From G. C. Greubel, Mar 24 2025: (Start)
T(n, k) = 3*binomial(n, k), for n >= 4 and 2 <= k <= n-2, otherwise T(n, 0) = T(n, n) = 1, T(n, 1) = T(n, n-1) = 2*A065475(n-1).
T(n, n-k) = T(n, k).
T(n, 1) = A005843(n) - [n=1] - 2*[n=2].
Columns: T(n, k) = 3*binomial(n,k) - 2*[n=k] - (k+1)*[n=k+1], k >= 2.
Sum_{k=0..n} T(n, k) = 2*A095151(n-1) - 2*[n=0] - 2*[n=1].
Sum_{k=0..n} (-1)^k*T(n, k) = (1+(-1)^n)*(n-2) + 5*[n=0]. (End)

Extensions

Edited by Franck Maminirina Ramaharo, Jan 02 2019

A194485 T(n,k) = number of ways to arrange k indistinguishable points on an n X n X n triangular grid so that no four points are in the same row or diagonal.

Original entry on oeis.org

1, 0, 3, 0, 3, 6, 0, 1, 15, 10, 0, 0, 20, 45, 15, 0, 0, 15, 120, 105, 21, 0, 0, 6, 207, 455, 210, 28, 0, 0, 1, 234, 1347, 1330, 378, 36, 0, 0, 0, 165, 2817, 5922, 3276, 630, 45, 0, 0, 0, 63, 4135, 19362, 20307, 7140, 990, 55, 0, 0, 0, 9, 4080, 47010, 94584, 58527, 14190, 1485
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Table starts
...1....0......0.......0.........0..........0...........0............0
...3....3......1.......0.........0..........0...........0............0
...6...15.....20......15.........6..........1...........0............0
..10...45....120.....207.......234........165..........63............9
..15..105....455....1347......2817.......4135........4080.........2463
..21..210...1330....5922.....19362......47010.......83745.......105663
..28..378...3276...20307.....94584.....337860......927471......1931571
..36..630...7140...58527....365904....1790472.....6924357.....21123489
..45..990..14190..148239...1193283....7622340....39196161....162957252
..55.1485..26235..339669...3413619...27489825...180512640....974497260
..66.2145..45760..718344...8800704...87018360...708150465...4794685500
..78.3003..76076.1422564..20845968..247874770..2442836682..20207649891
..91.4095.121485.2666664..46017972..647091588..7582054194..75074999142
.105.5460.187460.4771221..95710797.1569661600.21540941994.251128663929
.120.7140.280840.8201466.189154056.3576049620.56763356130.768641935191

Examples

			Some solutions for n=5, k=4:
......0..........0..........0..........1..........0..........0..........0
.....0.0........0.1........0.1........1.0........0.0........0.1........0.0
....0.0.0......0.0.1......1.0.0......0.0.0......0.0.0......0.0.0......1.1.0
...0.0.1.1....0.0.0.0....0.0.1.0....0.0.1.0....0.0.1.1....0.0.0.0....0.0.0.0
..0.1.0.0.1..0.1.1.0.0..0.1.0.0.0..0.1.0.0.0..0.0.1.1.0..0.1.1.0.1..1.0.1.0.0
		

Crossrefs

Column 1 is A000217.
Column 2 is A050534(n+1).
Column 3 is A093566(n+2).

Formula

Empirical:
T(n,1) = (1/2)*n^2 + (1/2)*n
T(n,2) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,3) = (1/48)*n^6 + (1/16)*n^5 - (1/16)*n^4 - (11/48)*n^3 + (1/24)*n^2 + (1/6)*n
T(n,4) = (1/384)*n^8 + (1/96)*n^7 - (1/64)*n^6 - (13/120)*n^5 + (19/128)*n^4 + (7/96)*n^3 - (13/96)*n^2 + (1/40)*n
T(n,5) = (1/3840)*n^10 + (1/768)*n^9 - (1/384)*n^8 - (59/1920)*n^7 + (281/3840)*n^6 + (149/3840)*n^5 - (5/24)*n^4 + (29/320)*n^3 + (11/80)*n^2 - (1/10)*n
T(n,6) = (1/46080)*n^12 + (1/7680)*n^11 - (1/3072)*n^10 - (137/23040)*n^9 + (871/46080)*n^8 + (3107/161280)*n^7 - (5573/46080)*n^6 + (1157/23040)*n^5 + (2627/11520)*n^4 - (1121/5760)*n^3 - (181/1440)*n^2 + (11/84)*n
T(n,7) = (1/645120)*n^14 + (1/92160)*n^13 - (1/30720)*n^12 - (79/92160)*n^11 + (101/30720)*n^10 + (757/129024)*n^9 - (3049/92160)*n^8 - (34099/645120)*n^7 + (6613/15360)*n^6 - (16859/23040)*n^5 + (1043/3840)*n^4 + (2759/5040)*n^3 - (753/1120)*n^2 + (13/56)*n
Empirical: general T(n,k,z) for fewer than z points in any row or diagonal is polynomial in n of degree 2k with lead coefficient 1/(2^k*k!) for small k.
T(n,1,2) = (1/2)*n^2 + (1/2)*n
T(n,1,3) = (1/2)*n^2 + (1/2)*n
T(n,1,4) = (1/2)*n^2 + (1/2)*n
T(n,2,2) = (1/8)*n^4 - (1/4)*n^3 - (1/8)*n^2 + (1/4)*n
T(n,2,3) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,2,4) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,3,3) = (1/48)*n^6 + (1/16)*n^5 - (3/16)*n^4 + (1/48)*n^3 + (1/6)*n^2 - (1/12)*n
T(n,3,4) = (1/48)*n^6 + (1/16)*n^5 - (1/16)*n^4 - (11/48)*n^3 + (1/24)*n^2 + (1/6)*n
T(n,4,3) = (1/384)*n^8 + (1/96)*n^7 - (5/64)*n^6 + (13/240)*n^5 + (27/128)*n^4 - (23/96)*n^3 - (13/96)*n^2 + (7/40)*n
T(n,4,4) = (1/384)*n^8 + (1/96)*n^7 - (1/64)*n^6 - (13/120)*n^5 + (19/128)*n^4 + (7/96)*n^3 - (13/96)*n^2 + (1/40)*n
T(n,5,3) = (1/3840)*n^10 + (1/768)*n^9 - (7/384)*n^8 + (37/1920)*n^7 + (737/3840)*n^6 - (2347/3840)*n^5 + (101/192)*n^4 + (93/320)*n^3 - (7/10)*n^2 + (3/10)*n
T(n,5,4) = (1/3840)*n^10 + (1/768)*n^9 - (1/384)*n^8 - (59/1920)*n^7 + (281/3840)*n^6 + (149/3840)*n^5 - (5/24)*n^4 + (29/320)*n^3 + (11/80)*n^2 - (1/10)*n
T(n,6,4) = (1/46080)*n^12 + (1/7680)*n^11 - (1/3072)*n^10 - (137/23040)*n^9 + (871/46080)*n^8 + (3107/161280)*n^7 - (5573/46080)*n^6 + (1157/23040)*n^5 + (2627/11520)*n^4 - (1121/5760)*n^3 - (181/1440)*n^2 + (11/84)*n
T(n,7,4) = (1/645120)*n^14 + (1/92160)*n^13 - (1/30720)*n^12 - (79/92160)*n^11 + (101/30720)*n^10 + (757/129024)*n^9 - (3049/92160)*n^8 - (34099/645120)*n^7 + (6613/15360)*n^6 - (16859/23040)*n^5 + (1043/3840)*n^4 + (2759/5040)*n^3 - (753/1120)*n^2 + (13/56)*n
Previous Showing 21-30 of 54 results. Next