cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A325249 Sum of the omega-sequence of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 4, 3, 5, 1, 8, 1, 5, 5, 5, 1, 8, 1, 8, 5, 5, 1, 9, 3, 5, 4, 8, 1, 7, 1, 6, 5, 5, 5, 7, 1, 5, 5, 9, 1, 7, 1, 8, 8, 5, 1, 10, 3, 8, 5, 8, 1, 9, 5, 9, 5, 5, 1, 12, 1, 5, 8, 7, 5, 7, 1, 8, 5, 7, 1, 10, 1, 5, 8, 8, 5, 7, 1, 10, 5, 5, 1, 12, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The omega-sequence of 180 is (5,3,2,2,1) with sum 13, so a(180) = 13.
		

Crossrefs

Positions of m's are A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Total[omseq[n]],{n,100}]

Formula

a(n) = A056239(A325248(n)).
a(n!) = A325274(n).

A179665 a(n) = prime(n)^9.

Original entry on oeis.org

512, 19683, 1953125, 40353607, 2357947691, 10604499373, 118587876497, 322687697779, 1801152661463, 14507145975869, 26439622160671, 129961739795077, 327381934393961, 502592611936843, 1119130473102767
Offset: 1

Views

Author

Keywords

Comments

Product_{n >= 2, m_n = (a(n) mod 4) - 2} ((a(n) + 1) / (a(n) - 1))^m_n = 209865342976 / 209844223875. - Dimitris Valianatos, May 13 2020

Examples

			a(1) = 512 since the ninth power of the first prime is 2^9 = 512. - _Wesley Ivan Hurt_, Mar 27 2014
		

Crossrefs

Programs

Formula

a(n) = A000040(n)^9 = A001017(A000040(n)). - Wesley Ivan Hurt, Mar 27 2014
Sum_{n>=1} 1/a(n) = P(9) = 0.0020044675... (A085969). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 24 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(9)/zeta(18) = A013667/A013676.
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(9) = 1/A013667. (End)

A062799 Inverse Möbius transform of the numbers of distinct prime factors (A001221).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 7, 1, 4, 4, 4, 1, 7, 1, 7, 4, 4, 1, 10, 2, 4, 3, 7, 1, 12, 1, 5, 4, 4, 4, 12, 1, 4, 4, 10, 1, 12, 1, 7, 7, 4, 1, 13, 2, 7, 4, 7, 1, 10, 4, 10, 4, 4, 1, 20, 1, 4, 7, 6, 4, 12, 1, 7, 4, 12, 1, 17, 1, 4, 7, 7, 4, 12, 1, 13, 4, 4
Offset: 1

Views

Author

Labos Elemer, Jul 19 2001

Keywords

Comments

Let us say that two divisors d_1 and d_2 of n are adjacent divisors if d_1/d_2 or d_2/d_1 is a prime. Then a(n) is the number of all pairs of adjacent divisors of n. - Vladimir Shevelev, Aug 16 2010
Equivalent to the preceding comment: a(n) is the number of edges in the directed multigraph on tau(n) vertices, vertices labeled by the divisors d_i of n, where edges connect vertex(d_i) and vertex(d_j) if the ratio of the labels is a prime. - R. J. Mathar, Sep 23 2011
a(A001248(n)) = 2. - Reinhard Zumkeller, Dec 02 2014
Depends on the prime signature of n as follows: a(A025487(n)) = 0, 1, 2, 4, 3, 7, 4, 10, 12, 5, 12, 13, 20, 6, 17, 16, 28, 7, 22, 33, 19 ,32, 24, 36, 8, 27, 46, ... (n>=1). - R. J. Mathar, May 28 2017

Examples

			n = 255: divisors = {1, 3, 5, 15, 17, 51, 85, 255}, a(255) = 0+1+1+2+1+2+2+3 = 12.
		

Crossrefs

Programs

  • Haskell
    a062799 = sum . map a001221 . a027750_row
    -- Reinhard Zumkeller, Dec 02 2014
    
  • Maple
    read("transforms") ;
    A001221 := proc(n)
            nops(numtheory[factorset](n)) ;
    end proc:
    omega := [seq(A001221(n),n=1..80)] ;
    ones := [seq(1,n=1..80)] ;
    DIRICHLET(ones,omega) ; # R. J. Mathar, Sep 23 2011
    N:= 1000: # to get a(1) to a(N)
    B:= Vector(N,t-> nops(numtheory:-factorset(t))):
    A:= Vector(N):
    for d from 1 to N do
      md:= d*[$1..floor(N/d)];
      A[md]:= map(`+`,A[md],B[d])
    od:
    convert(A,list); # Robert Israel, Oct 21 2015
  • Mathematica
    f[n_] := Block[{d = Divisors[n], c = l = 0, k = 2}, l = Length[d]; While[k < l + 1, c = c + Length[ FactorInteger[ d[[k]] ]]; k++ ]; Return[c]]; Table[f[n], {n, 1, 100} ]
    omega[n_] := Length[FactorInteger[n]]; SetAttributes[omega, Listable]; omega[1] := 0; A062799[n_] := Plus @@ omega[Divisors[n]] (* Enrique Pérez Herrero, Sep 08 2009 *)
  • PARI
    a(n)=my(f=factor(n)[,2],s);forvec(v=vector(#f,i,[0,f[i]]),s+=sum(i=1,#f,v[i]>0));s \\ Charles R Greathouse IV, Oct 15 2015
    
  • PARI
    vector(100, n, sumdiv(n, k, omega(k))) \\ Altug Alkan, Oct 15 2015

Formula

a(n) = Sum_{d|n} A001221(d), that is, where d runs over divisors of n.
For squarefree s (i.e., s in A005117), a(s) = omega(s)*2^(omega(s)-1), where omega(n) = A001221(n). Also, for n>1, a(n) <= omega(n)*A000005(n) - 1. - Enrique Pérez Herrero, Sep 08 2009
Let n=Product_{i=1..omega(n)} p(i)^e(i). a(n) = d[Product_{i=1..omega(n)} (1 + e(i)*x)]/dx|x=1. In other words, a(n) = Sum_{m>=1} A146289(n,m)*m. - Geoffrey Critzer, Feb 10 2015
a(A000040(n)) = 1; a(A001248(n)) = 2; a(A030078(n)) = 3; a(A030514(n)) = 4; a(A050997(n)) = 5. - Altug Alkan, Oct 17 2015
a(n) = Sum_{prime p|n} A000005(n/p). - Max Alekseyev, Aug 11 2016
G.f.: Sum_{k>=1} omega(k)*x^k/(1 - x^k), where omega(k) is the number of distinct primes dividing k (A001221). - Ilya Gutkovskiy, Jan 16 2017
Dirichlet g.f.: zeta(s)^2*primezeta(s) where primezeta(s) = Sum_{prime p} p^(-s). - Benedict W. J. Irwin, Jul 16 2018

A080257 Numbers having at least two distinct or a total of at least three prime factors.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2003

Keywords

Comments

Complement of A000430; A080256(a(n)) > 3.
A084114(a(n)) > 0, see also A084110.
Also numbers greater than the square of their smallest prime-factor: a(n)>A020639(a(n))^2=A088377(a(n));
a(n)>A000430(k) for n<=13, a(n) < A000430(k) for n>13.
Numbers with at least 4 divisors. - Franklin T. Adams-Watters, Jul 28 2006
Union of A024619 and A033942; A211110(a(n)) > 2. - Reinhard Zumkeller, Apr 02 2012
Also numbers > 1 that are neither prime nor a square of a prime. Also numbers whose omega-sequence (A323023) has sum > 3. Numbers with omega-sequence summing to m are: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7). - Gus Wiseman, Jul 03 2019
Numbers n such that sigma_2(n)*tau(n) = A001157(n)*A000005(n) >= 4*n^2. Note that sigma_2(n)*tau(n) >= sigma(n)^2 = A072861 for all n. - Joshua Zelinsky, Jan 23 2025

Examples

			8=2*2*2 and 10=2*5 are terms; 4=2*2 is not a term.
From _Gus Wiseman_, Jul 03 2019: (Start)
The sequence of terms together with their prime indices begins:
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
(End)
		

Crossrefs

Programs

  • Haskell
    a080257 n = a080257_list !! (n-1)
    a080257_list = m a024619_list a033942_list where
       m xs'@(x:xs) ys'@(y:ys) | x < y  = x : m xs ys'
                               | x == y = x : m xs ys
                               | x > y  = y : m xs' ys
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Mathematica
    Select[Range[100],PrimeNu[#]>1||PrimeOmega[#]>2&] (* Harvey P. Dale, Jul 23 2013 *)
  • PARI
    is(n)=omega(n)>1 || isprimepower(n)>2
    
  • PARI
    is(n)=my(k=isprimepower(n)); if(k, k>2, !isprime(n)) \\ Charles R Greathouse IV, Jan 23 2025

Formula

a(n) = n + O(n/log n). - Charles R Greathouse IV, Sep 14 2015

Extensions

Definition clarified by Harvey P. Dale, Jul 23 2013

A335988 Cubefull exponentially odd numbers: numbers whose prime factorization contains only odd exponents that are larger than 1.

Original entry on oeis.org

1, 8, 27, 32, 125, 128, 216, 243, 343, 512, 864, 1000, 1331, 1944, 2048, 2187, 2197, 2744, 3125, 3375, 3456, 4000, 4913, 6859, 7776, 8192, 9261, 10648, 10976, 12167, 13824, 16000, 16807, 17496, 17576, 19683, 24389, 25000, 27000, 29791, 30375, 31104, 32768, 35937
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2020

Keywords

Comments

This sequence is a permutation of A355038.
This sequence is also a permutation of the exponentially odd numbers (A268335) multiplied by the square of their squarefree kernel (A007947).
a(n)/rad(a(n)) is a permutation of the squares.
a(n)/rad(a(n))^2 is a permutation of the exponentially odd numbers.

Examples

			8 = 2^3 is a term since the exponent of its prime factor 2 is 3 which is odd and larger than 1.
		

Crossrefs

Intersection of A001694 and A268335.
Intersection of A036966 and A268335.
A355038 in ascending order.
A030078, A050997, A092759, A179665, A079395 and A138031 are subsequences.

Programs

  • Mathematica
    Join[{1}, Select[Range[10^5], AllTrue[Last /@ FactorInteger[#], #1 > 1 && OddQ[#1] &] &]]
  • Python
    from math import isqrt, prod
    from sympy import factorint
    def afind(N): # all terms up to limit N
        cands = (n**2*prod(factorint(n**2)) for n in range(1, isqrt(N//2)+2))
        return sorted(c for c in cands if c <= N)
    print(afind(4*10**4)) # Michael S. Branicky, Jun 16 2022

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.2312911... (A065487).

A056595 Number of nonsquare divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 6, 1, 3, 2, 4, 1, 7, 1, 3, 3, 3, 3, 5, 1, 3, 3, 6, 1, 7, 1, 4, 4, 3, 1, 7, 1, 4, 3, 4, 1, 6, 3, 6, 3, 3, 1, 10, 1, 3, 4, 3, 3, 7, 1, 4, 3, 7, 1, 8, 1, 3, 4, 4, 3, 7, 1, 7, 2, 3, 1, 10, 3, 3, 3, 6, 1, 10, 3, 4, 3, 3, 3, 9, 1, 4, 4, 5, 1, 7, 1
Offset: 1

Views

Author

Labos Elemer, Jul 21 2000

Keywords

Comments

a(A000430(n))=1; a(A030078(n))=2; a(A030514(n))=2; a(A006881(n))=3; a(A050997(n))=3; a(A030516(n))=3; a(A054753(n))=4; a(A000290(n))=A055205(n). - Reinhard Zumkeller, Aug 15 2011

Examples

			a(36)=5 because the set of divisors of 36 has tau(36)=nine elements, {1, 2, 3, 4, 6, 9, 12, 18, 36}, five of which, that is {2, 3, 6, 12, 18}, are not perfect squares.
		

Crossrefs

See A194095 and A194096 for record values and where they occur.

Programs

Formula

a(n) = A000005(n) - A046951(n) = tau(n) - tau(A000188(n)).
Sum_{k=1..n} a(k) ~ n*log(n) + (2*gamma - zeta(2) - 1)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 01 2023

A030515 Numbers with exactly 6 divisors.

Original entry on oeis.org

12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428
Offset: 1

Views

Author

Keywords

Comments

Numbers which are either the 5th power of a prime or the product of a prime and the square of a different prime, i.e., numbers which are in A050997 (5th powers of primes) or A054753. - Henry Bottomley, Apr 25 2000
Also numbers which are the square root of the product of their proper divisors. - Amarnath Murthy, Apr 21 2001
Such numbers are multiplicatively 3-perfect (i.e., the product of divisors of a(n) equals a(n)^3). - Lekraj Beedassy, Jul 13 2005
Since A119479(6)=5, there are never more than 5 consecutive terms. Quintuples of consecutive terms start at 10093613546512321, 14414905793929921, 266667848769941521, ... (A141621). No such quintuple contains a term of the form p^5. - Ivan Neretin, Feb 08 2016

References

  • Amarnath Murthy, A note on the Smarandache Divisor sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.

Crossrefs

Cf. A061117.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, {2,seq(i,i=3..floor(N/4))}):
    S:= select(`<=`,{seq(p^5, p = Primes),seq(seq(p*q^2, p=Primes minus {q}),q=Primes)},N):
    sort(convert(S,list)); # Robert Israel, Feb 10 2016
  • Mathematica
    f[n_]:=Length[Divisors[n]]==6; lst={};Do[If[f[n],AppendTo[lst,n]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *)
    Select[Range[500],DivisorSigma[0,#]==6&] (* Harvey P. Dale, Oct 02 2014 *)
  • PARI
    is(n)=numdiv(n)==6 \\ Charles R Greathouse IV, Jan 23 2014
    
  • Python
    from sympy import divisor_count
    def ok(n): return divisor_count(n) == 6
    print([k for k in range(429) if ok(k)]) # Michael S. Branicky, Dec 18 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A030515(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**2) for p in primerange(isqrt(x)+1))+primepi(integer_nthroot(x,3)[0])-primepi(integer_nthroot(x,5)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Union of A050997 and A054753. - Lekraj Beedassy, Jul 13 2005
A000005(a(n))=6. - Juri-Stepan Gerasimov, Oct 10 2009

Extensions

Definition clarified by Jonathan Sondow, Jan 23 2014

A133527 Sum of fifth powers of four consecutive primes.

Original entry on oeis.org

20207, 181226, 552276, 1969008, 4428300, 10703592, 30843448, 58052742, 124920600, 234340458, 360837752, 561553608, 910405144, 1509473242, 2207061100, 3327841200, 4713875058, 6072022352, 8304482450, 10893397986
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=20207 because 2^5+3^5+5^5+7^5=20207.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a, {n, 1, 100}]

Formula

a(n) = A133532(n) + A050997(n+3). - Michel Marcus, Nov 08 2013

A133532 Sum of fifth powers of three consecutive primes.

Original entry on oeis.org

3400, 20175, 180983, 549151, 1952201, 4267249, 10332299, 29423591, 55576643, 118484257, 213829309, 332208601, 492209651, 794548943, 1362464799, 1977716093, 2909645707, 3998950759, 5227426051, 6954357343, 9089168635
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=3400 because 2^5+3^5+5^5=3400.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a, {n, 1, 100}]
    Total[#^5]&/@Partition[Prime[Range[30]],3,1] (* Harvey P. Dale, May 26 2011 *)

Formula

a(n) = A133536(n) + A050997(n+2). - Michel Marcus, Nov 09 2013

A229125 Numbers of the form p * m^2, where p is prime and m > 0: union of A228056 and A000040.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131, 137, 139, 147, 148, 149
Offset: 1

Views

Author

Chris Boyd, Sep 14 2013

Keywords

Comments

No term is the product of two other terms.
Squares of terms and pairwise products of distinct terms form a subsequence of A028260.
Numbers n such that A162642(n) = 1. - Jason Kimberley, Oct 10 2016
Numbers k such that A007913(k) is a prime number. - Amiram Eldar, Jul 27 2020

Crossrefs

Programs

  • Mathematica
    With[{nn=70},Take[Union[Flatten[Table[p*m^2,{p,Prime[Range[nn]]},{m,nn}]]], nn]] (* Harvey P. Dale, Dec 02 2014 *)
  • PARI
    test(n)=isprime(core(n))
    for(n=1,200,if(test(n), print1(n",")))
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A229125(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//y**2) for y in range(1,isqrt(x)+1))
        return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025

Formula

The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962). - Amiram Eldar, Jul 27 2020
Previous Showing 11-20 of 73 results. Next