cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 309 results. Next

A053287 Euler totient function (A000010) of 2^n - 1.

Original entry on oeis.org

1, 2, 6, 8, 30, 36, 126, 128, 432, 600, 1936, 1728, 8190, 10584, 27000, 32768, 131070, 139968, 524286, 480000, 1778112, 2640704, 8210080, 6635520, 32400000, 44717400, 113467392, 132765696, 533826432, 534600000, 2147483646, 2147483648, 6963536448, 11452896600
Offset: 1

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Comments

Number of elements of multiplicative order 2^n - 1 in GF(2^n).
n divides a(n) because 2^a(n) mod 2^n - 1 is 1, 2^n mod 2^n - 1 is 1, so n | a(n). A011260(n) = a(n)/n. - Jinyuan Wang, Oct 31 2018
The set {a(n)/(2^n-1)} is dense in [0, 1] (Luca, 2003). - Amiram Eldar, Mar 04 2021

Crossrefs

Programs

Formula

a(n) = A000010(A000225(n)).
a(A000079(n-1)) = A058891(n).
a(n) = A000010(2^n-1) or also a(n) = A062401(2^(n-1)) = phi(sigma(2^(n-1))). - Labos Elemer, Jul 19 2004

A051709 a(n) = sigma(n) + phi(n) - 2n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 7, 0, 9, 0, 10, 2, 2, 0, 20, 1, 2, 4, 12, 0, 20, 0, 15, 2, 2, 2, 31, 0, 2, 2, 26, 0, 24, 0, 16, 12, 2, 0, 44, 1, 13, 2, 18, 0, 30, 2, 32, 2, 2, 0, 64, 0, 2, 14, 31, 2, 32, 0, 22, 2, 28, 0, 75, 0, 2, 14, 24, 2, 36, 0
Offset: 1

Views

Author

Keywords

Comments

Sigma is the sum of divisors (A000203), and phi is the Euler totient function (A000010). - Michael B. Porter, Jul 05 2013
Because sigma and phi are multiplicative functions, it is easy to show that (1) if a(n)=0, then n is prime or 1 and (2) if a(n)=2, then n is the product of two distinct prime numbers. Note that a(n) is the n-th term of the Dirichlet series whose generating function is given below. Using the generating function, it is theoretically possible to compute a(n). Hence a(n)=0 could be used as a primality test and a(n)=2 could be used as a test for membership in P2 (A006881). - T. D. Noe, Aug 01 2002
It appears that a(n) - A002033(n) = zeta(s-1) * (zeta(s) - 2 + 1/zeta(s)) + 1/(zeta(s)-2). - Eric Desbiaux, Jul 04 2013
a(n) = 1 if and only if n = prime(k)^2 (n is in A001248). It seems that a(n) = k has only finitely many solutions for k >= 3. - Jianing Song, Jun 27 2021

Examples

			a(5) = sigma(5) + phi(5) - 2*5 = 6 + 4 - 10 = 0.
		

Crossrefs

Cf. A278373 (range of this sequence), A056996 (numbers not present).
Cf. also A344753, A345001 (analogous sequences).

Programs

  • Mathematica
    Table[DivisorSigma[1,n]+EulerPhi[n]-2n,{n,80}] (* Harvey P. Dale, Apr 08 2015 *)
  • PARI
    a(n)=sigma(n)+eulerphi(n)-2*n \\ Charles R Greathouse IV, Jul 05 2013
    
  • PARI
    A051709(n) = -sumdiv(n,d,(dAntti Karttunen, Mar 02 2018

Formula

Dirichlet g.f.: zeta(s-1) * (zeta(s) - 2 + 1/zeta(s)). - T. D. Noe, Aug 01 2002
From Antti Karttunen, Mar 02 2018: (Start)
a(n) = A001065(n) - A051953(n). [Difference between the sum of proper divisors of n and their Moebius-transform.]
a(n) = -Sum_{d|n, dA008683(n/d)*A001065(d). (End)
Sum_{k=1..n} a(k) = (3/(Pi^2) + Pi^2/12 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 03 2023

A121998 Table, n-th row gives numbers between 1 and n that have a common factor with n.

Original entry on oeis.org

2, 3, 2, 4, 5, 2, 3, 4, 6, 7, 2, 4, 6, 8, 3, 6, 9, 2, 4, 5, 6, 8, 10, 11, 2, 3, 4, 6, 8, 9, 10, 12, 13, 2, 4, 6, 7, 8, 10, 12, 14, 3, 5, 6, 9, 10, 12, 15, 2, 4, 6, 8, 10, 12, 14, 16, 17, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 19, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 3, 6, 7, 9, 12, 14, 15
Offset: 2

Views

Author

Keywords

Comments

Row n contains numbers m <= n such that gcd(m,n) > 1, i.e., numbers m in the cototient of n. - Michael De Vlieger, Mar 13 2018

Examples

			2;
3;
2,4;
5;
2,3,4,6;
7;
...
		

Crossrefs

Cf. A051953 (row lengths), A038566, A081520, A133995 (nondivisors in the cototient of n).

Programs

  • Mathematica
    Table[Select[Range@ n, ! CoprimeQ[#, n] &], {n, 20}] // Flatten (* Michael De Vlieger, Mar 13 2018 *)

A319340 Sum of Euler totient function and its Dirichlet inverse: a(n) = A000010(n) + A023900(n).

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 3, 4, 8, 0, 6, 0, 12, 16, 7, 0, 8, 0, 12, 24, 20, 0, 10, 16, 24, 16, 18, 0, 0, 0, 15, 40, 32, 48, 14, 0, 36, 48, 20, 0, 0, 0, 30, 32, 44, 0, 18, 36, 24, 64, 36, 0, 20, 80, 30, 72, 56, 0, 8, 0, 60, 48, 31, 96, 0, 0, 48, 88, 0, 0, 26, 0, 72, 48, 54, 120, 0, 0, 36, 52, 80, 0, 12, 128, 84, 112, 50, 0, 16
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A000010(n) + A023900(n).
a(n) = A318833(n) - A051953(n).

A050384 Nonprimes such that n and phi(n) are relatively prime.

Original entry on oeis.org

1, 15, 33, 35, 51, 65, 69, 77, 85, 87, 91, 95, 115, 119, 123, 133, 141, 143, 145, 159, 161, 177, 185, 187, 209, 213, 215, 217, 221, 235, 247, 249, 255, 259, 265, 267, 287, 295, 299, 303, 319, 321, 323, 329, 335, 339, 341, 345, 365, 371, 377, 391, 393, 395, 403
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

Also nonprimes n such that there is only one group of order n, i.e., A000001(n) = 1.
Intersection of A018252 and A003277.
Also numbers n such that n and A051953(n) are relatively prime. - Labos Elemer
Apart from the first term, this is a subsequence of A024556. - Charles R Greathouse IV, Apr 15 2015
Every Carmichael number and each of its nonprime divisors is in this sequence. - Emmanuel Vantieghem, Apr 20 2015
An alternative definition (excluding the 1): k is strongly prime to n <=> k is prime to n and k does not divide n - 1 (cf. A181830). n is cyclic if n is prime to phi(n). n is strongly cyclic if phi(n) is strongly prime to n. The a(n) are the strongly cyclic numbers apart from a(1). - Peter Luschny, Nov 14 2018

Crossrefs

If the primes are included we get A003277. Cf. A000001, A000010 (phi), A181830, A181837.

Programs

  • Maple
    isStrongPrimeTo := (n, k) -> (igcd(n, k) = 1) and not (irem(n-1, k) = 0):
    isStrongCyclic := n -> isStrongPrimeTo(n, numtheory:-phi(n)):
    [1, op(select(isStrongCyclic, [$(2..404)]))]; # Peter Luschny, Dec 13 2021
  • Mathematica
    Select[Range[450], !PrimeQ[#] && GCD[#, EulerPhi[#]] == 1&] (* Harvey P. Dale, Jan 31 2011 *)
  • PARI
    is(n)=!isprime(n) && gcd(eulerphi(n),n)==1 \\ Charles R Greathouse IV, Apr 15 2015
    
  • Sage
    def isStrongPrimeTo(n, m): return gcd(n, m) == 1 and not m.divides(n-1)
    def isStrongCyclic(n): return isStrongPrimeTo(n, euler_phi(n))
    [1] + [n for n in (1..403) if isStrongCyclic(n)] # Peter Luschny, Nov 14 2018

A053285 Totient of 2^n+1.

Original entry on oeis.org

1, 2, 4, 6, 16, 20, 48, 84, 256, 324, 800, 1364, 3840, 5460, 12544, 19800, 65536, 87380, 186624, 349524, 986880, 1365336, 3345408, 5592404, 16515072, 20250000, 52306176, 84768120, 252645120, 351847488, 760320000, 1431655764, 4288266240, 5632621632, 13628740608
Offset: 0

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Examples

			It is a power of 2 iff n is a Fermat prime.
		

Crossrefs

Programs

Formula

a(n) = A000010(A000051(n)).

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 12 2015

A063528 Smallest number such that it and its successor are both divisible by an n-th power larger than 1.

Original entry on oeis.org

2, 8, 80, 80, 1215, 16767, 76544, 636416, 3995648, 24151040, 36315135, 689278976, 1487503359, 1487503359, 155240824832, 785129144319, 4857090670592, 45922887663615, 157197025673216, 1375916505694208, 2280241934368767, 2280241934368767, 2280241934368767
Offset: 1

Views

Author

Erich Friedman, Aug 01 2001

Keywords

Comments

Lesser of the smallest pair of consecutive numbers divisible by an n-th power.
To get a(j), max exponent[=A051953(n)] of a(j) and 1+a(j) should exceed (j-1).
One can find a solution for primes p and q by solving p^n*i + 1 = q^n*j; then p^n*i is a solution. This solution will be less than (p*q)^n but greater than max(p,q)^n. Thus finding the solutions for 2, 3 (p=2,q=3 and p=3,q=2), one need at most also look at 2, 5 and 3, 5. It appears that the solution with 2, 3 is always optimal. - Franklin T. Adams-Watters, May 27 2011

Examples

			a(4) = 80 since 2^4 = 16 divides 80 and 3^4 = 81 divides 81.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008.

Crossrefs

We need A051903(a[n]) > n-1 and A051903(a[n]+1) > n-1.

Programs

  • Mathematica
    k = 4; Do[k = k - 2; a = b = 0; While[ b = Max[ Transpose[ FactorInteger[k]] [[2]]]; a <= n || b <= n, k++; a = b]; Print[k - 1], {n, 0, 19} ]
  • PARI
    b(n,p=2,q=3)=local(i);i=Mod(p,q^n)^-n; min(p^n*lift(i)-1,p^n*lift(-i))
    a(n)=local(r);r=b(n);if(r>5^n,r=min(r,min(b(n,2,5),b(n,3,5))));r /* Franklin T. Adams-Watters, May 27 2011 */

Extensions

More terms from Jud McCranie, Aug 06 2001

A063740 Number of integers k such that cototient(k) = n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 2, 3, 3, 1, 3, 1, 3, 1, 4, 4, 3, 0, 4, 1, 4, 3, 3, 4, 3, 0, 5, 2, 2, 1, 4, 1, 5, 1, 4, 2, 4, 2, 6, 5, 5, 0, 3, 0, 6, 2, 4, 2, 5, 0, 7, 4, 3, 1, 8, 4, 6, 1, 3, 1, 5, 2, 7, 3, 5, 1, 7, 1, 8, 1, 5, 2, 6, 1, 9, 2, 6, 0, 4, 2, 10, 2, 4, 2, 5, 2, 7, 5, 4, 1, 8, 0, 9, 1, 6, 1, 7
Offset: 2

Views

Author

Labos Elemer, Aug 13 2001

Keywords

Comments

Note that a(0) is also well-defined to be 1 because the only solution to x - phi(x) = 0 is x = 1. - Jianing Song, Dec 25 2018

Examples

			Cototient(x) = 101 for x in {485, 1157, 1577, 1817, 2117, 2201, 2501, 2537, 10201}, with a(101) = 8 terms; e.g. 485 - phi(485) = 485 - 384 = 101. Cototient(x) = 102 only for x = 202 so a(102) = 1.
		

Crossrefs

Cf. A063748 (greatest solution to x-phi(x)=n).

Programs

  • Mathematica
    Table[Count[Range[n^2], k_ /; k - EulerPhi@ k == n], {n, 2, 105}] (* Michael De Vlieger, Mar 17 2017 *)
  • PARI
    first(n)=my(v=vector(n),t); forcomposite(k=4,n^2, t=k-eulerphi(k); if(t<=n, v[t]++)); v[2..n] \\ Charles R Greathouse IV, Mar 17 2017

Formula

From Amiram Eldar, Apr 08 2023 (Start)
a(A005278(n)) = 0.
a(A131825(n)) = 1.
a(A063741(n)) = n. (End)

Extensions

Name edited by Charles R Greathouse IV, Mar 17 2017

A079277 Largest integer k < n such that any prime factor of k is also a prime factor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 4, 3, 8, 1, 9, 1, 8, 9, 8, 1, 16, 1, 16, 9, 16, 1, 18, 5, 16, 9, 16, 1, 27, 1, 16, 27, 32, 25, 32, 1, 32, 27, 32, 1, 36, 1, 32, 27, 32, 1, 36, 7, 40, 27, 32, 1, 48, 25, 49, 27, 32, 1, 54, 1, 32, 49, 32, 25, 64, 1, 64, 27, 64, 1, 64, 1, 64, 45, 64, 49, 72, 1, 64, 27
Offset: 2

Views

Author

Istvan Beck (istbe(AT)online.no), Feb 07 2003

Keywords

Comments

The function a(n) complements Euler's phi-function: 1) a(n)+phi(n) = n if n is a power of a prime (actually, in A285710). 2) It seems also that a(n)+phi(n) >= n for "almost all numbers" (see A285709, A208815). 3) a(2n) = n+1 if and only if n is a Mersenne prime. 4) Lim a(n^k)/n^k =1 if n has at least two prime factors and k goes to infinity.
From Michael De Vlieger, Apr 26 2017: (Start)
In other words, largest integer k < n such that k | n^e with integer e >= 0.
Penultimate term of row n in A162306. (The last term of row n in A162306 is n.)
For prime p, a(p) = 1. More generally, for n with omega(n) = 1, that is, a prime power p^e with e > 0, a(p^e) = p^(e - 1).
For n with omega(n) > 1, a(n) does not divide n. If n = pq with q = p + 2, then p^2 < n though p^2 does not divide n, yet p^2 | n^e with e > 1. If n has more than 2 distinct prime divisors p, powers p^m of these divisors will appear in the range (1..n-1) such that p^m > n/lpf(n) (lpf(n) = A020639(n)). Since a(n) is the largest of these, a(n) is not a divisor of n.
If a(n) does not divide n, then a(n) appears last in row n of A272618.
(End)

Examples

			a(10)=8 since 8 is the largest integer< 10 that can be written using only the primes 2 and 5. a(78)=72 since 72 is the largest number less than 78 that can be written using only the primes 2, 3 and 13. (78=2*3*13).
		

Crossrefs

Programs

  • Mathematica
    Table[If[n == 2, 1, Module[{k = n - 2, e = Floor@ Log2@ n}, While[PowerMod[n, e, k] != 0, k--]; k]], {n, 2, 81}] (* Michael De Vlieger, Apr 26 2017 *)
  • PARI
    a(n) = {forstep(k = n - 1, 2, -1, f = factor(k); okk = 1; for (i=1, #f~, if ((n % f[i,1]) != 0, okk = 0; break;)); if (okk, return (k));); return (1);} \\ Michel Marcus, Jun 11 2013
    
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014
    A079277(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(1==n,0,k = n-1; while(A007947(k*n) <> r, k = k-1); k)); }; \\ Antti Karttunen, Apr 26 2017
    
  • Python
    from sympy import divisors
    from sympy.ntheory.factor_ import core
    def a007947(n): return max(d for d in divisors(n) if core(d) == d)
    def a(n):
        k=n - 1
        while True:
            if a007947(k*n) == a007947(n): return k
            else: k-=1
    print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Apr 26 2017

Formula

Largest k < n with rad(kn) = rad(n), where rad = A007947.

A300833 Filter sequence combining A300830(n), A300831(n) and A300832(n), three products formed from such proper divisors d of n for which mu(n/d) = 0, +1 or -1 respectively, where mu is Möbius mu function (A008683).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 56, 57, 2, 58, 59, 60, 2, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2018

Keywords

Comments

Restricted growth sequence transform of triple [A300830(n), A300831(n), A300832(n)].
For all i, j:
a(i) = a(j) => A293215(i) = A293215(j) => A001065(i) = A001065(j).
a(i) = a(j) => A051953(i) = A051953(j).
a(i) = a(j) => A295885(i) = A295885(j).
Apparently this is also the restricted growth sequence transform of ordered pair [A300831(n), A300832(n)], which is true if it holds that whenever we have A300831(i) = A300831(j) and A300832(i) = A300832(j) for any i, j, then also A300830(i) = A300830(j). This has been checked for the first 65537 terms.

Examples

			a(39) = a(55) (= 28) as A300830(39) = A300830(55) = 1, A300831(39) = A300831(55) = 2 and A300832(39) = A300832(55) = 420.
		

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A300830(n) = { my(m=1); fordiv(n,d,if(!moebius(n/d),m *= A019565(d))); m; };
    A300831(n) = { my(m=1); fordiv(n,d,if((d < n)&&(1==moebius(n/d)), m *= A019565(d))); m; };
    A300832(n) = { my(m=1); fordiv(n,d,if(-1==moebius(n/d), m *= A019565(d))); m; };
    Aux300833(n) = [A300830(n), A300831(n), A300832(n)];
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux300833(n))),"b300833.txt");
Previous Showing 81-90 of 309 results. Next