cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A194005 Triangle of the coefficients of an (n+1)-th order differential equation associated with A103631.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 3, 1, 1, 6, 5, 10, 6, 4, 1, 1, 7, 6, 15, 10, 10, 4, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1, 1, 11, 10, 45, 36, 84, 56, 70, 35, 21, 6, 1
Offset: 0

Views

Author

Johannes W. Meijer and A. Hirschberg (a.hirschberg(AT)tue.nl), Aug 11 2011

Keywords

Comments

This triangle is a companion to Parks' triangle A103631.
The coefficients of triangle A103631(n,k) appear in appendix 2 of Park’s remarkable article “A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov” if we assume that the b(n) coefficients are all equal to 1, see the second Maple program.
The a(n,k) coefficients of the triangle given above are related to the coefficients of a linear (n+1)-th order differential equation for the case b(n)=1, see the examples.
a(n,k) is also the number of symmetric binary strings of odd length n with Hamming weight k>0 and no consecutive 1's. - Christian Barrientos and Sarah Minion, Feb 27 2018

Examples

			For the 5th-order linear differential equation the coefficients a(k) are: a(0) = 1, a(1) = a(4,0) = 1, a(2) = a(4,1) = 4, a(3) = a(4,2) = 3, a(4) = a(4,3) = 3 and a(5) = a(4,4) = 1.
The corresponding Hurwitz matrices A(k) are, see Parks: A(5) = Matrix([[a(1),a(0),0,0,0], [a(3),a(2),a(1),a(0),0], [a(5),a(4),a(3),a(2),a(1)], [0,0,a(5),a(4),a(3)], [0,0,0,0,a(5)]]), A(4) = Matrix([[a(1),a(0),0,0], [a(3),a(2),a(1),a(0)], [a(5),a(4),a(3),a(2)], [0,0,a(5),a(4)]]), A(3) = Matrix([[a(1),a(0),0], [a(3),a(2),a(1)], [a(5),a(4),a(3)]]), A(2) = Matrix([[a(1),a(0)], [a(3),a(2)]]) and A(1) = Matrix([[a(1)]]).
The values of b(k) are, see Parks: b(1) = d(1), b(2) = d(2)/d(1), b(3) = d(3)/(d(1)*d(2)), b(4) = d(1)*d(4)/(d(2)*d(3)) and b(5) = d(2)*d(5)/(d(3)*d(4)).
These a(k) values lead to d(k) = 1 and subsequently to b(k) = 1 and this confirms our initial assumption, see the comments.
'
Triangle starts:
  [0] 1;
  [1] 1, 1;
  [2] 1, 2, 1;
  [3] 1, 3, 2,  1;
  [4] 1, 4, 3,  3,  1;
  [5] 1, 5, 4,  6,  3,  1;
  [6] 1, 6, 5, 10,  6,  4,  1;
  [7] 1, 7, 6, 15, 10, 10,  4,  1;
  [8] 1, 8, 7, 21, 15, 20, 10,  5, 1;
  [9] 1, 9, 8, 28, 21, 35, 20, 15, 5, 1;
		

Crossrefs

Cf. A065941 and A103631.
Triangle sums (see A180662): A000071 (row sums; alt row sums), A075427 (Kn22), A000079 (Kn3), A109222(n+1)-1 (Kn4), A000045 (Fi1), A034943 (Ca3), A001519 (Gi3), A000930 (Ze3)
Interesting diagonals: T(n,n-4) = A189976(n+5) and T(n,n-5) = A189980(n+6)
Cf. A052509.

Programs

  • Haskell
    a194005 n k = a194005_tabl !! n !! k
    a194005_row n = a194005_tabl !! n
    a194005_tabl = [1] : [1,1] : f [1] [1,1] where
       f row' row = rs : f row rs where
         rs = zipWith (+) ([0,1] ++ row') (row ++ [0])
    -- Reinhard Zumkeller, Nov 22 2012
  • Maple
    A194005 := proc(n, k): binomial(floor((2*n+1-k)/2), n-k) end:
    for n from 0 to 11 do seq(A194005(n, k), k=0..n) od;
    seq(seq(A194005(n,k), k=0..n), n=0..11);
    nmax:=11: for n from 0 to nmax+1 do b(n):=1 od:
    A103631 := proc(n,k) option remember: local j: if k=0 and n=0 then b(1)
    elif k=0 and n>=1 then 0 elif k=1 then b(n+1) elif k=2 then b(1)*b(n+1)
    elif k>=3 then expand(b(n+1)*add(procname(j,k-2), j=k-2..n-2)) fi: end:
    for n from 0 to nmax do for k from 0 to n do
    A194005(n,k):= add(A103631(n1,k), n1=k..n) od: od:
    seq(seq(A194005(n,k),k=0..n), n=0..nmax);
  • Mathematica
    Flatten[Table[Binomial[Floor[(2n+1-k)/2],n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Apr 15 2012 *)

Formula

T(n,k) = binomial(floor((2*n+1-k)/2), n-k).
T(n,k) = sum(A103631(n1,k), n1=k..n), 0<=k<=n and n>=0.
T(n,k) = sum(binomial(floor((2*n1-k-1)/2), n1-k), n1=k..n).
T(n,0) = T(n,n) = 1, T(n,k) = T(n-2,k-2) + T(n-1,k), 0 < k < n. - Reinhard Zumkeller, Nov 23 2012

A054123 Right Fibonacci row-sum array T(n,k), n >= 0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 2, 1, 1, 1, 5, 7, 4, 2, 1, 1, 1, 6, 11, 8, 4, 2, 1, 1, 1, 7, 16, 15, 8, 4, 2, 1, 1, 1, 8, 22, 26, 16, 8, 4, 2, 1, 1, 1, 9, 29, 42, 31, 16, 8, 4, 2, 1, 1, 1, 10, 37, 64, 57, 32, 16, 8, 4, 2, 1, 1, 1, 11, 46, 93, 99, 63, 32, 16, 8, 4, 2, 1, 1, 1, 12, 56
Offset: 0

Views

Author

Keywords

Comments

Variant of A052509 with an additional diagonal of 1's. - R. J. Mathar, Oct 12 2011
Starting with g(0) = {0}, generate g(n) for n > 0 inductively using these rules:
(1) if x is in g(n-1), then x + 1 is in g(n); and
(2) if x is in g(n-1) and x < 2, then x/2 is in g(n).
Then g(1) = {1/1}, g(2) = {1/2,2/1}, g(3) = {1/4,3/2,3/1}, etc. The denominators in g(n) are 2^0, 2^1, ..., 2^(n-1), and T(n,k) is the number of occurrences of 2^(n-1-k), for k = 0..n-1. - Clark Kimberling, Nov 09 2015
G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = (1-x^2*y) / ((1-x*y)*(1-x-x^2*y)). - Jianing Song, May 30 2022

Examples

			Rows:
1
1 1
1 1 1
1 2 1 1
1 3 2 1 1
1 4 4 2 1 1
1 5 7 4 2 1 1
		

Crossrefs

Reflection of array in A054124 about vertical central line.
Row sums: 1, 2, 3, 5, 8, 13, ... (Fibonacci numbers, A000045). Central numbers: 1, 1, 2, 4, 8, ... (binary powers, A000079). Cf. A011973.
Cf. A129713.

Programs

  • Haskell
    a054123 n k = a054123_tabl !! n !! k
    a054123_row n = a054123_tabl !! n
    a054123_tabl = [1] : [1, 1] : f [1] [1, 1] where
       f us vs = ws : f vs ws where
                 ws = zipWith (+) (0 : init us ++ [0, 0]) (vs ++ [1])
    -- Reinhard Zumkeller, May 26 2015
    
  • Mathematica
    Clear[t]; t[n_, k_] := t[n, k] = If[k == 0 || k == n || k == n-1, 1, t[n-1, k] + t[n-2, k-1]]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 01 2013 *)
  • PARI
    A052509(n,k) = sum(m=0, k, binomial(n-k, m));
    T(n,k) = if(k==n, 1, A052509(n-1,k)) \\ Jianing Song, May 30 2022

Formula

T(n, 0) = T(n, n) = 1 for n >= 0; T(n, n-1) = 1 for n >= 1; T(n, k) = T(n-1, k) + T(n-2, k-1) for k=1, 2, ..., n-2, n >= 3. [Corrected by Jianing Song, May 30 2022]
T(n, k) = T(n-1, k-1) + U(n-1, k) for k=1, 2, ..., floor(n/2), n >= 3, array U as in A011973.

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 05 2003

A054126 Odd-index Fibonacci row-sum array: T(n,k)=U(2n+1,n+1+k), 0<=k<=n, n >= 0, U the array in A054125.

Original entry on oeis.org

2, 3, 2, 6, 5, 2, 12, 13, 7, 2, 24, 30, 24, 9, 2, 48, 65, 68, 39, 11, 2, 96, 136, 171, 134, 58, 13, 2, 192, 279, 398, 394, 236, 81, 15, 2, 384, 566, 880, 1040, 802, 382, 108, 17, 2, 768, 1141, 1880, 2542, 2396, 1479, 580, 139, 19, 2, 1536
Offset: 0

Views

Author

Keywords

Examples

			Rows:
   2;
   3,  2;
   6,  5, 2;
  12, 13, 7, 2;
  ...
		

Programs

  • PARI
    T(n,k) = if(k==n, 2, 2^(n-1-k) + sum(m=0, n-k, binomial(n+k, m))) \\ Jianing Song, May 30 2022

Formula

From Jianing Song, May 30 2022: (Start)
T(n,k) = 2 if k = n, otherwise A052509(2n,n+1+k) + A052509(2n,n-k) = 2^(n-1-k) + Sum_{m=0..n-k} binomial(n+k,m) = 2^(n-1-k) + 2^(n+k) - Sum_{m=0..2*k-1} binomial(n+k,m).
T(n,k) = [x^n*y^(n-k)] (1-x*y) * ((1+y-x*y^2)/((1-x*y^2)*((1-x*y)^2-x)) + (1+y-x*y)/((1-x)*((1-x*y)^2-x*y^2))). (End)

A053221 Row sums of triangle A053218.

Original entry on oeis.org

1, 5, 16, 43, 106, 249, 568, 1271, 2806, 6133, 13300, 28659, 61426, 131057, 278512, 589807, 1245166, 2621421, 5505004, 11534315, 24117226, 50331625, 104857576, 218103783, 452984806, 939524069, 1946157028, 4026531811, 8321499106
Offset: 1

Views

Author

Asher Auel, Jan 01 2000

Keywords

Comments

Considered as a vector, the sequence = A074909 * [1, 2, 3, ...], where A074909 is the beheaded Pascal's triangle as a matrix. - Gary W. Adamson, Mar 06 2012
a(n) is the sum of the upper left n X n subarray of A052509 (viewed as an infinite square array). For example (1+1+1) + (1+2+2) + (1+3+4) = 16. - J. M. Bergot, Nov 06 2012
Number of ternary strings of length n that contain at least one 2 and at most one 0. For example, a(3) = 16 since the strings are the 6 permutations of 201, the 3 permutations of 211, the 3 permutations of 220, the 3 permutations of 221, and 222. - Enrique Navarrete, Jul 25 2021

Examples

			a(4) = 4 + 7 + 12 + 20 = 43.
		

Crossrefs

Programs

  • Magma
    [(n+2)*2^(n-1)-n-1: n in [1..50]]; // G. C. Greubel, Sep 03 2018
  • Maple
    A053221 := proc(n) (n+2)*2^(n-1)-n-1 ; end proc: # R. J. Mathar, Sep 02 2011
  • Mathematica
    Table[(n + 2)*2^(n - 1) - n - 1, {n, 29}] (* or *)
    Rest@ CoefficientList[Series[-x (-1 + x + x^2)/((2 x - 1)^2*(x - 1)^2), {x, 0, 29}], x] (* Michael De Vlieger, Sep 22 2017 *)
    LinearRecurrence[{6,-13,12,-4},{1,5,16,43},30] (* Harvey P. Dale, Jun 28 2021 *)
  • PARI
    vector(50,n, (n+2)*2^(n-1)-n-1) \\ G. C. Greubel, Sep 03 2018
    

Formula

a(n) = (n+2)*2^(n-1)-n-1. - Vladeta Jovovic, Feb 28 2003
G.f.: -x*(-1+x+x^2) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, Sep 02 2011
a(n) = (1/2) * Sum_{k=1..n} Sum_{i=1..n} C(k,i) + C(n,k). - Wesley Ivan Hurt, Sep 22 2017
E.g.f.: exp(x)*(exp(x)-1)*(1+x). - Enrique Navarrete, Jul 25 2021
a(n+1) = 2*a(n) + A006127(n). - Ya-Ping Lu, Jan 01 2024

A054124 Left Fibonacci row-sum array, n >= 0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 4, 4, 1, 1, 1, 2, 4, 7, 5, 1, 1, 1, 2, 4, 8, 11, 6, 1, 1, 1, 2, 4, 8, 15, 16, 7, 1, 1, 1, 2, 4, 8, 16, 26, 22, 8, 1, 1, 1, 2, 4, 8, 16, 31, 42, 29, 9, 1, 1, 1, 2, 4, 8, 16, 32, 57, 64, 37, 10, 1, 1, 1, 2
Offset: 0

Views

Author

Keywords

Comments

Reflection of array in A054123 about vertical central line.
Starting with g(0) = {0}, generate g(n) for n > 0 inductively using these rules:
(1) if x is in g(n-1), then x+1 is in g(n); and
(2) if x is in g(n-1) and x < 2, then x/2 is in g(n).
Then g(1) = {1/1}, g(2) = {1/2,2/1}, g(3) = {1/4,3/2,3/1}, etc. The denominators in g(n) are 2^0, 2^1, ..., 2^(n-1), and T(n,k) is the number of occurrences of 2^k, for k = 0..n-1. - Clark Kimberling, Nov 09 2015
Variant of A004070 with an additional column of 1's on the left. - Jianing Song, May 30 2022

Examples

			Rows:
1
1 1
1 1 1
1 1 2 1
1 1 2 3 1
...
		

Crossrefs

Row sums: A000045. Central numbers: 1, 1, 2, 4, 8, ... (A000079).
First n numbers of n-th column for n >= 1 form the array in A008949.

Programs

  • Haskell
    a054124 n k = a054124_tabl !! n !! k
    a054124_row n = a054124_tabl !! n
    a054124_tabl = map reverse a054123_tabl
    -- Reinhard Zumkeller, May 26 2015
    
  • Mathematica
    t[, 0|1] = t[n, n_] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + t[n-2, k-1]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 25 2013 *)
  • PARI
    A052509(n,k) = sum(m=0, k, binomial(n-k, m));
    T(n,k) = if(k==0, 1, A052509(n-1,n-k)) \\ Jianing Song, May 30 2022

Formula

T(n, 0) = T(n, n) = 1 for n >= 0; T(n, 1) = 1 for n >= 1; T(n, k) = T(n-1, k-1) + T(n-2, k-1) for k=2, 3, ..., n-1, n >= 3. [Corrected by Jianing Song, May 30 2022]
G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = (1-x^2*y) / ((1-x)*(1-x*y-x^2*y)). - Jianing Song, May 30 2022

A052511 a(n) = prime(n) - 1 - A006218(n).

Original entry on oeis.org

0, -1, -1, -2, 0, -2, 0, -2, -1, 1, 1, 1, 3, 1, 1, 2, 6, 2, 6, 4, 2, 4, 6, 4, 9, 9, 7, 5, 5, 1, 13, 11, 13, 11, 17, 10, 14, 16, 16, 14, 18, 12, 20, 16, 14, 12, 22, 24, 25, 21, 21, 21, 21, 23, 25, 23, 25, 23, 27, 19, 19, 25, 33, 30, 28, 24, 36, 36, 42, 36, 38, 32, 38, 40, 40, 38, 40, 40, 42, 40, 45, 43
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Oct 14 2008

Keywords

Comments

a(n) > 0 for n >= 10.
The old entry with this sequence number was a duplicate of A052509.

Crossrefs

See A088526 for another version.

Programs

  • Python
    from math import isqrt
    from sympy import prime
    def A052511(n): return prime(n)-1+(s:=isqrt(n))**2-(sum(n//k for k in range(1,s+1))<<1)  # Chai Wah Wu, Mar 26 2025

A164925 Array, binomial(j-i,j), read by rising antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, -1, 0, 1, 1, -2, 0, 0, 1, 1, -3, 1, 0, 0, 1, 1, -4, 3, 0, 0, 0, 1, 1, -5, 6, -1, 0, 0, 0, 1, 1, -6, 10, -4, 0, 0, 0, 0, 1, 1, -7, 15, -10, 1, 0, 0, 0, 0, 1, 1, -8, 21, -20, 5, 0, 0, 0, 0, 0, 1, 1, -9, 28, -35, 15, -1, 0, 0, 0, 0, 0, 1, 1, -10, 36, -56, 35, -6, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Mark Dols, Aug 31 2009

Keywords

Comments

Inverse of A052509, or A004070???

Examples

			Array, A(n, k), begins as:
  1,  1,  1,   1,  1,   1,  1,  1,  1, ...
  1,  0,  0,   0,  0,   0,  0,  0,  0, ...
  1, -1,  0,   0,  0,   0,  0,  0,  0, ...
  1, -2,  1,   0,  0,   0,  0,  0,  0, ...
  1, -3,  3,  -1,  0,   0,  0,  0,  0, ...
  1, -4,  6,  -4,  1,   0,  0,  0,  0, ...
  1, -5, 10, -10,  5,  -1,  0,  0,  0, ...
  1, -6, 15, -20, 15,  -6,  1,  0,  0, ...
  1, -7, 21, -35, 35, -21,  7, -1,  0, ...
Antidiagonal triangle, T(n, k), begins as:
  1;
  1,  1;
  1,  0,  1;
  1, -1,  0,  1;
  1, -2,  0,  0,  1;
  1, -3,  1,  0,  0,  1;
  1, -4,  3,  0,  0,  0,  1;
  1, -5,  6, -1,  0,  0,  0,  1;
  1, -6, 10, -4,  0,  0,  0,  0,  1;
		

Crossrefs

Programs

  • Magma
    A164925:= func< n,k | k eq 0 or k eq n select 1 else Binomial(2*k-n,k) >;
    [A164925(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2023
    
  • Mathematica
    T[n_, k_]:= If[k==0 || k==n, 1, Binomial[2*k-n, k]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 10 2023 *)
  • PARI
    {A(i, j) = if( i<0, 0, if(i==0 || j==0, 1, binomial(j-i, j)))}; /* Michael Somos, Jan 25 2012 */
    
  • SageMath
    def A164925(n,k): return 1 if (k==0 or k==n) else binomial(2*k-n, k)
    flatten([[A164925(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 10 2023

Formula

Sum_{k=0..n} T(n, k) = A164965(n). - Mark Dols, Sep 02 2009
From G. C. Greubel, Feb 10 2023: (Start)
A(n, k) = binomial(k-n, k), with A(0, k) = A(n, 0) = 1 (array).
T(n, k) = binomial(2*k-n, k), with T(n, 0) = T(n, n) = 1 (antidiagonal triangle).
Sum_{k=0..n} (-1)^k*T(n, k) = A008346(n).
Sum_{k=0..n} (-2)^k*T(n, k) = (-1)^n*A052992(n). (End)

Extensions

Edited by Michael Somos, Jan 26 2012
Offset changed by G. C. Greubel, Feb 10 2023

A193605 Triangle: (row n) = partial sums of partial sums of row n of Pascal's triangle.

Original entry on oeis.org

1, 1, 3, 1, 4, 8, 1, 5, 12, 20, 1, 6, 17, 32, 48, 1, 7, 23, 49, 80, 112, 1, 8, 30, 72, 129, 192, 256, 1, 9, 38, 102, 201, 321, 448, 576, 1, 10, 47, 140, 303, 522, 769, 1024, 1280, 1, 11, 57, 187, 443, 825, 1291, 1793, 2304, 2816, 1, 12, 68, 244, 630, 1268, 2116, 3084, 4097, 5120, 6144
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2011

Keywords

Comments

The n-th row is contains the partial sums of the n-th row of the array interpretation of A052509. - R. J. Mathar, Apr 22 2013

Examples

			First 5 rows of A193605:
1
1....3
1....4....8
1....5....12....20
1....6....17....32....48
		

Crossrefs

Cf. A193606.

Programs

  • Maple
    A052509 := proc(n,k)
        if k = 0 then
            1;
        else
            procname(n,k-1)+binomial(n,k) ;
        end if;
    end proc:
    A193605 := proc(n,k)
        if k = 0 then
            1;
        else
            procname(n,k-1)+A052509(n,k) ;
        end if;
    end proc: # R. J. Mathar, Apr 22 2013
    # Alternative after Vladimir Kruchinin:
    gf := ((x*y-1)/(1-2*x*y))^2/(1-x*y-x): ser := series(gf, x, 12):
    p := n -> coeff(ser,x,n): row := n -> seq(coeff(p(n),y,k), k=0..n):
    seq(row(n), n=0..10); # Peter Luschny, Aug 19 2019
  • Mathematica
    u[n_, k_] := Sum[Binomial[n, h], {h, 0, k}]
    p[n_, k_] := Sum[u[n, h], {h, 0, k}]
    Table[p[n, k], {n, 0, 12}, {k, 0, n}]
    Flatten[%]   (* A193605 as a sequence *)
    TableForm[Table[p[n, k], {n, 0, 12}, {k, 0, n}]]  (* A193605 as a triangle *)
  • Maxima
    T(n,k):=sum(((i+3)*2^(i-2))*binomial(n-i,k-i),i,1,min(n,k))+binomial(n,k);
    /* Vladimir Kruchinin, Aug 20 2019 */

Formula

Writing the general term as T(n,k), for 0<=k<=n:
T(n,n)=A001792, T(n,n-1)=A001787, T(n,n-2)=A000337, T(n,n-3)=A045618.
T(n-1,k-1) + T(n-1,k) = T(n,k). - David A. Corneth, Oct 18 2016
G.f.: -(1-x*y)^2/(4*x^3*y^3+(4*x^3-8*x^2)*y^2+(5*x-4*x^2)*y+x-1). - Vladimir Kruchinin, Aug 19 2019
T(n,k) = C(n,k)+Sum_{i=1..n} (i+3)*2^(i-2)*C(n-i,k-i), - Vladimir Kruchinin, Aug 20 2019

Extensions

More terms from David A. Corneth, Oct 18 2016

A054125 Sum of the arrays in A054123 and A054124.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 4, 4, 2, 2, 5, 6, 6, 5, 2, 2, 6, 9, 8, 9, 6, 2, 2, 7, 13, 12, 12, 13, 7, 2, 2, 8, 18, 19, 16, 19, 18, 8, 2, 2, 9, 24, 30, 24, 24, 30, 24, 9, 2, 2, 10, 31, 46, 39, 32, 39, 46, 31, 10, 2, 2, 11, 39, 68, 65, 48, 48, 65
Offset: 0

Views

Author

Keywords

Comments

Row sums are twice Fibonacci numbers, A006355(n+2).

Examples

			Rows:
  2;
  2,2;
  2,2,2;
  2,3,3,2;
  ...
		

Programs

Formula

From Jianing Song, May 30 2022: (Start)
T(n,k) = 2 if k = 0 or k = n, A052509(n-1,k) + A052509(n-1,n-k) otherwise.
G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = (1-x^2*y) * (1/((1-x*y)*(1-x-x^2*y)) + 1/((1-x)*(1-x*y-x^2*y))). (End)

A131250 A007318 * A004070.

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 8, 11, 6, 1, 16, 26, 22, 8, 1, 32, 57, 64, 37, 10, 1, 64, 120, 163, 130, 56, 12, 1, 128, 247, 382, 386, 232, 79, 14, 1, 256, 502, 848, 1024, 794, 378, 106, 16, 1, 512, 1013, 1816, 2510, 2380, 1471, 576, 137, 18, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Comments

Row sums = A061667: (1, 3, 9, 26, 73, 201, ...).
Companion triangle = A131249 = A007318 * A052509, where A052509 is the reversal of A004070.
Reversal of A097750. - Philippe Deléham, Jan 11 2014
Riordan array (1/(1-2x), x/(1-x)^2). - Philippe Deléham, Jan 11 2014
Diagonal sums are A045623. - Philippe Deléham, Jan 11 2014

Examples

			First few rows of the triangle:
   1;
   2,  1;
   4,  4,  1;
   8, 11,  6,  1;
  16, 26, 22,  8,  1;
  32, 57, 64, 37, 10,  1;
  ...
		

Crossrefs

Formula

Binomial transform of A004070.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0)=1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Jan 11 2014

Extensions

More terms from Philippe Deléham, Jan 11 2014
Previous Showing 11-20 of 24 results. Next