cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A202318 Let (n)_p denote the exponent of prime p in the prime power factorization of n. Then a(n) is defined by the formulas a(1)=1; for n >= 2, (a(n))_2 = (n)_2, (a(n))_3 = (n)_3 and, for p >= 5, (a(n))_p = 1 + ((2n)/(p-1))_p if p-1|2*n, and (a(n))_p = 0 otherwise.

Original entry on oeis.org

1, 10, 21, 20, 11, 2730, 1, 680, 1197, 550, 23, 5460, 1, 290, 7161, 1360, 1, 5757570, 1, 45100, 6321, 230, 47, 185640, 11, 530, 3591, 580, 59, 283933650, 1, 2720, 32361, 10, 781, 840605220, 1, 10, 1659, 1533400, 83, 23830170, 1, 40940, 408177, 470, 1, 36014160, 1, 277750, 2163, 1060, 107, 1882725390
Offset: 1

Views

Author

Keywords

Comments

a(n)=1 iff n has form 6n+-1 and, if d >= 5 is a divisor of n, then 2*d+1 is not prime. The places of 1's form sequence A045979.
If p is an odd prime and p^n is the side length of the odd leg of a primitive Pythagorean triangle (PPT) it constrains the other leg and hypotenuse to be (p^(2n)-1)/2 and (p^(2n)+1)/2 and the area to be (p^n-1)p^n(p^n+1)/4. Now consider the term (p^n-1)p^n(p^n+1): it must at least be divisible by 24 for all odd primes p because the area of a PPT is divisible by 6 (see A127922 for n=1). a(n) equals the common divisor of the term (p^n-1)p^n(p^n+1)/24 for all odd primes p. - Frank M Jackson, Dec 09 2017

Examples

			Let n=6. Since 2*6+1=13 is prime, the max p that should be considered is 13. We have
  (a(6))_2  = (a(6))_3 = 1,
  (a(6))_5  = (12/4)_5 + 1 = 1,
  (a(6))_7  = (12/6)_7 + 1 = 1,
  (a(6))_13 = (12/12)_13 + 1 = 1.
Thus a(6) = 2*3*5*7*13 = 2730.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Exp[Re[Limit[Zeta[s] (Zeta[-1]^(s - 1) - Zeta[-(2*n - 1)]^(s - 1)), s -> 1]]]], {n, 1, 54}] (* Mats Granvik, Feb 05 2016 *)
    Table[(lst=Table[p=Prime[m+1]; (p^n-1)p^n(p^n+1), {m, 1, 10}]; GCD@@lst/24), {n, 1, 100}] (* Frank M Jackson, Dec 09 2017 *)
    a[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}]; Array[a[2#+1]/(24 a[2#-1]) &, 100] (* using Jean-François Alcover's program A053657 *)(* Frank M Jackson, Dec 16 2017 *)
  • PARI
    a(n) = {my(r = 1); forprime(p=2, 2*n+1, if (p<=3, r *= p^valuation(n, p), if (! (2*n % (p-1)), r *= p^(1+valuation((2*n)/(p-1), p))););); r;} \\ Michel Marcus, Feb 06 2016

Formula

a(n) = (1/24)*b(2n+1)/b(2n-1), where b(n) = A053657(n).
a(p) = A002445(p)/6, for prime p >= 5.
a(n) = numerator of e^(real(lim_{s -> 1} (zeta(s)*(zeta(-1)^(s-1) - zeta(-(2*n-1))^(s-1))))). - Mats Granvik, Feb 05 2016
a(n) = A036283(n)/6. - Hugo Pfoertner, Dec 18 2022

A100655 Triangle read by rows giving coefficients in Bernoulli polynomials as defined in A001898, after multiplication by the common denominators A001898(n).

Original entry on oeis.org

1, 0, -1, 0, -1, 3, 0, 0, 1, -1, 0, 2, 5, -30, 15, 0, 0, -2, -5, 10, -3, 0, -16, -42, 91, 315, -315, 63, 0, 0, 16, 42, -7, -105, 63, -9, 0, 144, 404, -540, -2345, -840, 3150, -1260, 135, 0, 0, -144, -404, -100, 665, 448, -630, 180, -15, 0, -768, -2288, 2068, 11792, 8195, -8085, -8778, 6930, -1485, 99
Offset: 0

Views

Author

N. J. A. Sloane, Dec 05 2004

Keywords

Comments

Let p(n, x) = Sum_{k=0..n} T(n, k)*x^k, then the polynomials (-1)^n*p(n; x)/x are called 'Stirling polynomials' by Knuth et al. (CMath, eq. 6.45). - Peter Luschny, Feb 05 2021

Examples

			The Bernoulli polynomials B(0)(x) through B(6)(x) are:
        1
    -(1/2)* x
    (1/12)*(3*x - 1)*x
    -(1/8)*(x-1)*x^2
   (1/240)*(15*x^3 - 30*x^2 + 5*x + 2)*x
   -(1/96)*(x-1)*(3*x^2 - 7*x - 2)*x^2
  (1/4032)*(63*x^5 - 315*x^4 + 315*x^3 + 91*x^2 - 42*x - 16)*x
Triangle of coefficients starts:
[0] [1],
[1] [0,  -1],
[2] [0,  -1,   3],
[3] [0,   0,   1,   -1],
[4] [0,   2,   5,  -30,    15],
[5] [0,   0,  -2,   -5,    10,   -3],
[6] [0, -16, -42,   91,   315, -315,   63],
[7] [0,   0,  16,   42,    -7, -105,   63,    -9],
[8] [0, 144, 404, -540, -2345, -840, 3150, -1260, 135].
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 1st ed.; Addison-Wesley, 1989, p. 257.

Crossrefs

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(simplify(p),x)):
    E2 := (n, k) -> combinat[eulerian2](n, k): m := n -> mul(j-x, j = 1..n):
    Epoly := n -> simplify(expand(add(E2(n, k)*binomial(x+k,2*n), k = 0..n)/m(n))):
    poly := n -> Epoly(n)*denom(Epoly(n)):
    seq(print(CoeffList(poly(n))), n = 0..8); # Peter Luschny, Feb 05 2021
  • Mathematica
    row[n_] := NorlundB[n, x] // Together // Numerator // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 06 2019, after Peter Luschny *)
  • Sage
    # Formula (83), page 146 in Nörlund.
    @cached_function
    def NoerlundB(n, x):
        if n == 0: return 1
        return expand((-x/n)*add((-1)^k*binomial(n,k)*bernoulli(k)*NoerlundB(n-k,x) for k in (1..n)))
    def A100655_row(n): return numerator(NoerlundB(n, x)).list()
    [A100655_row(n) for n in (0..8)] # Peter Luschny, Jul 01 2019

Formula

E.g.f.: (y/(exp(y)-1))^x. - Vladeta Jovovic, Feb 27 2006
Let p(n, x) = (Sum_{k=0..n} E2(n, k)*binomial(x + k, 2*n))/(Product_{j=1..n} (j-x)), where E2 are the second-order Eulerian numbers (A201637), then T(n, k) = [x^k] M(n+1)*p(n, x), where M(n) are the Minkowski numbers (A053657). - Peter Luschny, Feb 05 2021

A203484 For n>=0, let n!^(3) = A202368(n+1) and, for 0<=m<=n, C^(3)(n,m) = n!^(3)/(m!^(3)*(n-m)!^(3)). The sequence gives triangle of numbers C^(3)(n,m) with rows of length n+1.

Original entry on oeis.org

1, 1, 1, 1, 42, 1, 1, 5, 5, 1, 1, 1092, 130, 1092, 1, 1, 1, 26, 26, 1, 1, 1, 11970, 285, 62244, 285, 11970, 1, 1, 11, 3135, 627, 627, 3135, 11, 1
Offset: 0

Views

Author

Keywords

Comments

Conjecture. If p is prime of the form 3*k+1, then the k-th row contains two 1's and k-1 numbers multiple of p; if p is prime of the form 3*k+2, then the (2*k+1)-th row contains two 1's and 2*k numbers multiple of p.

Examples

			Triangle begins
n/m.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1......1
.2..|..1.....42.....1
.3..|..1......5 ....5......1
.4..|..1...1092...130...1092.....1
.5..|..1......1....26.....26.....1......1
.6..|..1..11970...285..62244...285..11970....1
.7..|..1.....11..3135....627...627...3135...11.....1
.8..|
		

Crossrefs

Formula

Conjecture. A007814(C^(3)(n,m)) = A007814(C(n,m)).

A212429 a(n) is the LCM of denominators of polynomials of degree n which are integer-valued on primes together with their first divided differences.

Original entry on oeis.org

1, 1, 2, 4, 48, 96, 1152, 2304, 276480, 552960, 6635520, 13271040, 33443020800, 66886041600, 802632499200, 1605264998400, 385263599616000, 770527199232000, 194172854206464000, 388345708412928000, 512616335105064960000, 1025232670210129920000
Offset: 1

Views

Author

Jean-Luc Chabert, Jun 21 2012

Keywords

Comments

a(n) is also the n-th Bhargava's factorial n_P^{{1}} of the set P of primes with respect to the first divided difference.

Examples

			a(5) = 48 because f(x) = (x-1)(x-2)(x-3)(x-5)(x-7)/48 satisfies f(p) and (f(p)-f(q))/(p-q) are integers for all primes p,q.
		

Crossrefs

Cf. A053657.

Programs

  • Maple
    a:= proc(n) local i, p, wp, r;
          r:=1;
          for i do p:= ithprime(i);
            wp:= p^(w(p,n-1));
            if wp=1 then break fi;
            r:= r*wp
          od; r
        end:
    w:= proc(p, n) local d, k, r;
          r:= 0;
          for k from 0 do d:= floor(n/((p-1)*p^k));
            if d=0 then break fi;
            r:= r+d;
          od;
          r -t(n,p)
        end:
    t:= proc(n, p) local h, q;
          q:= n/(p-1);
          for h from 0 while q>= p^h do od; h
        end:
    seq (a(n), n=1..30);  # Alois P. Heinz, Jun 25 2012
  • Mathematica
    a[n_] := Module[{i, p, wp, r}, r = 1; For[i = 1, True, i++, p = Prime[i]; wp = p^w[p, n - 1]; If[wp == 1, Break[]]; r = r*wp]; r];
    w[p_, n_] := Module[{d, k, r}, r = 0; For[k = 0, True, k++, d = Floor[n/((p - 1)*p^k)]; If[d == 0, Break[]]; r = r + d]; r - t[n, p]];
    t[n_, p_] := Module[{h, q}, q = n/(p - 1); For[h = 0, q >= p^h , h++]; h];
    a /@ Range[1, 30] (* Jean-François Alcover, Oct 14 2019, after Alois P. Heinz *)

Formula

a(n) = Prod_{p prime} p^w_p(n-1) where w_p(n) = Sum_{k>=0} floor(n / ((p-1)*p^k)) - t_{p,n} and p^(t_{p,n}-1) <= n/(p-1) < p^t_{p,n}.

A260326 Common denominator of coefficients in Nörlund's polynomial D_{2n}(x).

Original entry on oeis.org

1, 3, 15, 63, 135, 99, 12285, 405, 6885, 161595, 1403325, 419175, 24877125, 229635, 528525, 26101845, 214708725, 1148175, 31479513975, 134336475, 23302211625, 513217002375, 374333754375, 50996192625, 25178013826875, 678264862275, 813304020375, 6122798191125
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2015

Keywords

Comments

Let phi_(D,rho) be the average value of a generic degree D monic polynomial f when evaluated at the roots of the rho-th derivative of f, expressed as a polynomial in the averaged symmetric polynomials in the roots of f [Wojnar et al., 2017]. The "last" term of phi_(D,rho) is a multiple of the product of all roots of f; the coefficient is expressible as a polynomial h_D(N) in N:=D-rho. These polynomials are of the form h_D(N) = ((-1)^D/(D-1)!)(D-N)N^chi(D)*g_D(N) where chi(D) := (1 if D is odd, 0 if D is even) and g_D(N) is a monic polynomial of degree (D-2-chi). The coefficients of the g_D(N) are polynomials in D of the form k_n(D) = (1/Q(n))(D+t(n))^delta(n)D^chi(n+1)u_n(D) where Q(n) = A053657(n), t(n):=2 ceiling(n/2)+1, delta(n):= (1 if n is odd, 2 if n is even). For odd n, the leading coefficients of u_n(D) are a((n+1)/2). - Gregory Gerard Wojnar, Jul 17 2017

Crossrefs

For numerators see A260327.
Cf. A053657.

Programs

  • Maple
    # NorlundD polynomials are defined in A260327.
    seq(denom(NorlundD(2*n)(x)), n=0..27); # Peter Luschny, Jul 01 2019
  • Mathematica
    NorlundD[nu_, n_] := (-2)^nu NorlundB[nu, n, n/2] // Simplify;
    a[n_] := Module[{nb}, nb = NorlundB[2n, x]; nb/Coefficient[nb, x, 2n] // Together // Denominator];
    (* or: *)
    a[n_] := (2n)! SeriesCoefficient[(z/Sin[z])^x, {z, 0, 2n}] // Normal // Together // Denominator;
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 01 2019 *)
  • PARI
    { A260326(n) = my(t, Y); Y=y+O(y^(2*n+2)); t = (2*n)! * Pol( polcoeff( exp( x * log(Y/sinh(Y)) + O(x^(n+1)) ), 2*n, y ) ); denominator(content(t)); } \\ Max Alekseyev, Jul 04 2019

Formula

E.g.f. Sum_{n>=0} D_{2n}(x) y^(2n)/(2n)! = (y/sinh(y))^x. - Max Alekseyev, Jul 04 2019

Extensions

Terms a(7) and beyond from Gregory Gerard Wojnar, Jul 19 2017
a(24)-a(27) corrected by Jean-François Alcover, Jul 01 2019

A290030 Leading coefficients of numerators of Norlund's B_{nu}^(n) polynomials (Nørlund, Tafel 5, p. 459).

Original entry on oeis.org

1, -1, 3, -1, 15, -3, 63, -9, 135, -15, 99, -9, 12285, -945, 405, -27, 6885, -405, 161595, -8505, 1403325, -66825, 419175, -18225, 24877125, -995085, 229635, -8505, 528525, -18225, 26101845, -841995, 214708725, -6506325, 1148175, -32805, 31479513975, -850797675
Offset: 0

Views

Author

Gregory Gerard Wojnar, Jul 17 2017

Keywords

Comments

Let phi_(D,rho) be the average value of a generic degree D monic polynomial f when evaluated at the roots of the rho-th derivative of f, expressed as a polynomial in the averaged symmetric polynomials in the roots of f. [See arXiv:1706.08381 [math,GM], 2017.] The "last" term of phi_(D,rho) is a multiple of the product of all roots of f; the coefficient is expressible as a polynomial h_D(N) in N:=D-rho. These polynomials are of the form h_D(N)= ((-1)^D/(D-1)!)*(D-N)*N^chi(D)*g_D(N) where chi(D) := (1 if D is odd, 0 if D is even) and g_D(N) is a monic polynomial of degree (D-2-chi). The coefficients of the g_D(N) are polynomials in D of the form k_n(D)=(1/Q(n))*(D+t(n))^delta(n)*D^chi(n+1)*u_n(D) where Q(n)=A053657(n), t(n):=2 ceiling(n/2)+1, delta(n):= (1 if n is odd, 2 if n is even). The leading coefficients of u_n(D) are a(n).

Crossrefs

Programs

  • Mathematica
    a[n_] := NorlundB[n, x] // Together // Numerator // Coefficient[#, x, n]&;
    Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Jun 30 2019 *)
  • Sage
    [A100655_row(n)[n] for n in (0..37)] # Peter Luschny, Jul 01 2019

A358625 a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0

Views

Author

Peter Luschny, Dec 02 2022

Keywords

Comments

The rational numbers r(n) = Bernoulli(n, 1) / n are called the 'divided Bernoulli numbers'. r(n) is a p-integer for all primes p if p - 1 does not divide n. This is sometimes called 'Adams's theorem' (Ireland and Rosen). The important Kummer congruences for the Bernoulli numbers (1851) are stated in terms of the r(n).

Examples

			Rationals: 1, 1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, ...
Note that a(68) = -4633713579924631067171126424027918014373353 but A120082(68) = -125235502160125163977598011460214000388469.
		

References

  • Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]

Crossrefs

Programs

  • GAP
    Concatenation([1, 1], List([2..45], n-> NumeratorRat(Bernoulli(n)/(n)))); # G. C. Greubel, Sep 19 2019
  • Magma
    [1, 1] cat [Numerator(Bernoulli(n)/(n)): n in [2..45]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    A358625 := n -> ifelse(n = 0, 1, numer(bernoulli(n, 1) / n)):
    seq(A358625(n), n = 0.. 40);
    # Alternative:
    egf := 1 + x + log(1 - exp(-x)) - log(x): ser := series(egf, x, 42):
    seq(numer(n! * coeff(ser, x, n)), n = 0..40);
  • Mathematica
    Join[{1, 1}, Table[Numerator[BernoulliB[n] / n], {n, 2, 45}]]
  • PARI
    a(n) = if (n<=1, 1, numerator(bernfrac(n)/n)); \\ Michel Marcus, Feb 24 2015
    

Formula

a(n) = numerator(n! * [x^n](1 + x + log(1 - exp(-x)) - log(x))).
a(n) = numerator(-zeta(1 - n)) for n >= 1.
a(n) = numerator(Euler(n-1, 1) / (2*(2^n - 1))) for n >= 1.
denominator(r(2*n)) = A006953(n) for n >= 1.
denominator(r(2*n)) / 2 = A036283(n) for n >= 1.
denominator(r(2*n)) / 12 = A202318(n) for n >= 1.
denominator(r(2*n)) = (1/2) * A053657(2*n+1) / A053657(2*n-1) for n >= 1.

A163402 A Minkowski-type generalization of the factorial function: F(n,k) with k = 2.

Original entry on oeis.org

1, 1, 1, 3, 9, 135, 1215, 2835, 127575, 229635, 3444525, 1705039875, 107417512125, 13299311025, 4189282972875, 62839244593125, 188517733779375, 336504154796184375, 9085612179496978125, 2740105260483215625
Offset: 0

Views

Author

Peter Luschny, Jul 26 2009

Keywords

Comments

F(n,0) = n! (A000142)
F(n,1) = Minkowski(n)/n! (A163176)
F(n,2) = a(n)

Examples

			For n >= 0
F(n,0) 1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...
F(n,1) 1, 1, 1, 4, 2, 48, 16, 576, 144, 3840, ...
F(n,2) 1, 1, 1, 3, 9, 135, 1215, 2835, 127575, ...
F(n,3) 1, 1, 1, 1, 1, 1, 1, 5, 1, 25, 5, 35, ...
F(n,4) 1, 1, 1, 1, 1, 5, 25, 175, 4375, 4375, ...
F(n,5) 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 49, ...
		

Crossrefs

Programs

  • Maple
    F := proc(n,k) local L,p,i;
    L := proc(n,u,r) local q,s,m; m:=n-r;
    q:=u-r; s:=0; do if q>m then break fi;
    s:=s+iquo(m,q); q:=q*u od; s end;
    mul(p^add((-1)^i*L(n,p,i),i=0..k),
    p = select(isprime,[$(k+1)..n]))^((-1)^k) end:
    a(n) := n -> F(n,2);
  • Mathematica
    F[n_, k_] := Module[{L, p, i}, L[n0_, u_, r_] := Module[{q, s, m}, m = n0-r; q = u-r; s = 0; While[True, If[q > m, Break[]]; s = s + Quotient[m, q]; q = q*u]; s]; Product[p^Sum[(-1)^i*L[n, p, i], {i, 0, k}], {p, Select[Range[k+1, n], PrimeQ]}]^((-1)^k)]; a[n_] := F[n, 2]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
  • Sage
    def A163402(n):
        def L(n, u, r):
            m = n - r; q = u - r
            s = 0
            while(q <= m):
                s += m//q
                q *= u
            return s
        P = filter(is_prime, [3..n])
        return mul(p^add((-1)^i*L(n, p, i) for i in (0..2)) for p in P)
    print([A163402(n) for n in range(20)]) # Peter Luschny, Mar 13 2016

Formula

P(n,k) = {p prime | k+1 <= p <= n }
L(n,p,r) = Sum_{i>=0} floor((n-r)/((p-r)*p^i))
A(n,k) = Prod_{p in P(n,k)} p^(Sum_{m=0..k} (-1)^m*L(n,p,m))
F(n,k) = A(n,k)^((-1)^k).

A178473 For n>=0, let n!^(4) = A202369(n+1) and, for 0<=m<=n, C^(4)(n,m) = n!^(4)/(m!^(4)*(n-m)!^(4)). The sequence gives triangle of numbers C^(4)(n,m) with rows of length n+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 273, 273, 1, 1, 68, 9282, 68, 1, 1, 55, 1870, 1870, 55, 1, 1, 546, 15015, 3740, 15015, 546, 1, 1, 29, 7917, 1595, 1595, 7917, 29, 1
Offset: 0

Views

Author

Keywords

Comments

Conjecture. If p is prime of the form 4*k+1, then the k-th row contains two 1's and k-1 numbers multiple of p; if p is prime of the form 4*k+3, then the (2*k+1)-th row contains two 1's and 2*k numbers multiple of p.

Examples

			Triangle begins
n/m.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1......1
.2..|..1......2......1
.3..|..1....273 ...273......1
.4..|..1.....68...9282.....68......1
.5..|..1.....55...1870...1870.....55......1
.6..|..1....546..15015...3740..15015....546....1
.7..|..1.....29...7917...1595...1595...7917...29.....1
.8..|
		

Crossrefs

Formula

Conjecture. A007814(C^(4)(n,m)) = A007814(C(n,m)).

A186431 Row sums of A186430.

Original entry on oeis.org

1, 2, 4, 26, 18, 482, 266, 6050, 3114, 21122, 10730, 22178, 11226, 4455362, 2256338, 343874, 173610, 13643522, 6869842, 690621122, 347772738, 16250361602, 8187307306, 17146915106, 8584448890, 720152334722, 365024665978, 59381983394, 29700003082
Offset: 0

Views

Author

Peter Bala, Feb 21 2011

Keywords

Crossrefs

Programs

  • Maple
    # A186431, uses program for A053657 written by Peter Luschny:
    A053657 := proc(n) local P, p, q, s, r;
    P := select(isprime, [$2..n]); r:=1;
    for p in P do s := 0; q := p-1;
    do if q > (n-1) then break fi;
    s := s + iquo(n-1, q); q := q*p; od;
    r := r * p^s; od; r end:
    # Row sums:
    a:= n-> add(A053657(n)/(A053657(k)*A053657(n-k)), k = 0..n):
    seq (a(n), n = 0..22);
  • Mathematica
    b[n_] := b[n] = Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[ Range[n]]}];
    T[n_, k_] := b[n]/(b[k] b[n-k]);
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 26 2019 *)

Formula

a(n) = Sum_{k=0..n} A053657(n)/(A053657(k)*A053657(n-k)), with the convention that A053657(0) = 1.
Previous Showing 21-30 of 37 results. Next