A202318
Let (n)_p denote the exponent of prime p in the prime power factorization of n. Then a(n) is defined by the formulas a(1)=1; for n >= 2, (a(n))_2 = (n)_2, (a(n))_3 = (n)_3 and, for p >= 5, (a(n))_p = 1 + ((2n)/(p-1))_p if p-1|2*n, and (a(n))_p = 0 otherwise.
Original entry on oeis.org
1, 10, 21, 20, 11, 2730, 1, 680, 1197, 550, 23, 5460, 1, 290, 7161, 1360, 1, 5757570, 1, 45100, 6321, 230, 47, 185640, 11, 530, 3591, 580, 59, 283933650, 1, 2720, 32361, 10, 781, 840605220, 1, 10, 1659, 1533400, 83, 23830170, 1, 40940, 408177, 470, 1, 36014160, 1, 277750, 2163, 1060, 107, 1882725390
Offset: 1
Let n=6. Since 2*6+1=13 is prime, the max p that should be considered is 13. We have
(a(6))_2 = (a(6))_3 = 1,
(a(6))_5 = (12/4)_5 + 1 = 1,
(a(6))_7 = (12/6)_7 + 1 = 1,
(a(6))_13 = (12/12)_13 + 1 = 1.
Thus a(6) = 2*3*5*7*13 = 2730.
-
Table[Numerator[Exp[Re[Limit[Zeta[s] (Zeta[-1]^(s - 1) - Zeta[-(2*n - 1)]^(s - 1)), s -> 1]]]], {n, 1, 54}] (* Mats Granvik, Feb 05 2016 *)
Table[(lst=Table[p=Prime[m+1]; (p^n-1)p^n(p^n+1), {m, 1, 10}]; GCD@@lst/24), {n, 1, 100}] (* Frank M Jackson, Dec 09 2017 *)
a[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}]; Array[a[2#+1]/(24 a[2#-1]) &, 100] (* using Jean-François Alcover's program A053657 *)(* Frank M Jackson, Dec 16 2017 *)
-
a(n) = {my(r = 1); forprime(p=2, 2*n+1, if (p<=3, r *= p^valuation(n, p), if (! (2*n % (p-1)), r *= p^(1+valuation((2*n)/(p-1), p))););); r;} \\ Michel Marcus, Feb 06 2016
A100655
Triangle read by rows giving coefficients in Bernoulli polynomials as defined in A001898, after multiplication by the common denominators A001898(n).
Original entry on oeis.org
1, 0, -1, 0, -1, 3, 0, 0, 1, -1, 0, 2, 5, -30, 15, 0, 0, -2, -5, 10, -3, 0, -16, -42, 91, 315, -315, 63, 0, 0, 16, 42, -7, -105, 63, -9, 0, 144, 404, -540, -2345, -840, 3150, -1260, 135, 0, 0, -144, -404, -100, 665, 448, -630, 180, -15, 0, -768, -2288, 2068, 11792, 8195, -8085, -8778, 6930, -1485, 99
Offset: 0
The Bernoulli polynomials B(0)(x) through B(6)(x) are:
1
-(1/2)* x
(1/12)*(3*x - 1)*x
-(1/8)*(x-1)*x^2
(1/240)*(15*x^3 - 30*x^2 + 5*x + 2)*x
-(1/96)*(x-1)*(3*x^2 - 7*x - 2)*x^2
(1/4032)*(63*x^5 - 315*x^4 + 315*x^3 + 91*x^2 - 42*x - 16)*x
Triangle of coefficients starts:
[0] [1],
[1] [0, -1],
[2] [0, -1, 3],
[3] [0, 0, 1, -1],
[4] [0, 2, 5, -30, 15],
[5] [0, 0, -2, -5, 10, -3],
[6] [0, -16, -42, 91, 315, -315, 63],
[7] [0, 0, 16, 42, -7, -105, 63, -9],
[8] [0, 144, 404, -540, -2345, -840, 3150, -1260, 135].
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 1st ed.; Addison-Wesley, 1989, p. 257.
-
CoeffList := p -> op(PolynomialTools:-CoefficientList(simplify(p),x)):
E2 := (n, k) -> combinat[eulerian2](n, k): m := n -> mul(j-x, j = 1..n):
Epoly := n -> simplify(expand(add(E2(n, k)*binomial(x+k,2*n), k = 0..n)/m(n))):
poly := n -> Epoly(n)*denom(Epoly(n)):
seq(print(CoeffList(poly(n))), n = 0..8); # Peter Luschny, Feb 05 2021
-
row[n_] := NorlundB[n, x] // Together // Numerator // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 06 2019, after Peter Luschny *)
-
# Formula (83), page 146 in Nörlund.
@cached_function
def NoerlundB(n, x):
if n == 0: return 1
return expand((-x/n)*add((-1)^k*binomial(n,k)*bernoulli(k)*NoerlundB(n-k,x) for k in (1..n)))
def A100655_row(n): return numerator(NoerlundB(n, x)).list()
[A100655_row(n) for n in (0..8)] # Peter Luschny, Jul 01 2019
A203484
For n>=0, let n!^(3) = A202368(n+1) and, for 0<=m<=n, C^(3)(n,m) = n!^(3)/(m!^(3)*(n-m)!^(3)). The sequence gives triangle of numbers C^(3)(n,m) with rows of length n+1.
Original entry on oeis.org
1, 1, 1, 1, 42, 1, 1, 5, 5, 1, 1, 1092, 130, 1092, 1, 1, 1, 26, 26, 1, 1, 1, 11970, 285, 62244, 285, 11970, 1, 1, 11, 3135, 627, 627, 3135, 11, 1
Offset: 0
Triangle begins
n/m.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1......1
.2..|..1.....42.....1
.3..|..1......5 ....5......1
.4..|..1...1092...130...1092.....1
.5..|..1......1....26.....26.....1......1
.6..|..1..11970...285..62244...285..11970....1
.7..|..1.....11..3135....627...627...3135...11.....1
.8..|
A212429
a(n) is the LCM of denominators of polynomials of degree n which are integer-valued on primes together with their first divided differences.
Original entry on oeis.org
1, 1, 2, 4, 48, 96, 1152, 2304, 276480, 552960, 6635520, 13271040, 33443020800, 66886041600, 802632499200, 1605264998400, 385263599616000, 770527199232000, 194172854206464000, 388345708412928000, 512616335105064960000, 1025232670210129920000
Offset: 1
a(5) = 48 because f(x) = (x-1)(x-2)(x-3)(x-5)(x-7)/48 satisfies f(p) and (f(p)-f(q))/(p-q) are integers for all primes p,q.
- Alois P. Heinz, Table of n, a(n) for n = 1..170
- M. Bhargava, On P-orderings, Integer-Valued Polynomials, and Ultrametric Analysis, J. Amer. Math. Soc., 22 (2009), 963-993.
- J. L. Chabert, About polynomials whose divided differences are integer-valued on prime numbers, ICM 2012 Proceedings, vol. I, pp. 1-7. Complete proceedings (warning: file size is 26MB).
-
a:= proc(n) local i, p, wp, r;
r:=1;
for i do p:= ithprime(i);
wp:= p^(w(p,n-1));
if wp=1 then break fi;
r:= r*wp
od; r
end:
w:= proc(p, n) local d, k, r;
r:= 0;
for k from 0 do d:= floor(n/((p-1)*p^k));
if d=0 then break fi;
r:= r+d;
od;
r -t(n,p)
end:
t:= proc(n, p) local h, q;
q:= n/(p-1);
for h from 0 while q>= p^h do od; h
end:
seq (a(n), n=1..30); # Alois P. Heinz, Jun 25 2012
-
a[n_] := Module[{i, p, wp, r}, r = 1; For[i = 1, True, i++, p = Prime[i]; wp = p^w[p, n - 1]; If[wp == 1, Break[]]; r = r*wp]; r];
w[p_, n_] := Module[{d, k, r}, r = 0; For[k = 0, True, k++, d = Floor[n/((p - 1)*p^k)]; If[d == 0, Break[]]; r = r + d]; r - t[n, p]];
t[n_, p_] := Module[{h, q}, q = n/(p - 1); For[h = 0, q >= p^h , h++]; h];
a /@ Range[1, 30] (* Jean-François Alcover, Oct 14 2019, after Alois P. Heinz *)
A260326
Common denominator of coefficients in Nörlund's polynomial D_{2n}(x).
Original entry on oeis.org
1, 3, 15, 63, 135, 99, 12285, 405, 6885, 161595, 1403325, 419175, 24877125, 229635, 528525, 26101845, 214708725, 1148175, 31479513975, 134336475, 23302211625, 513217002375, 374333754375, 50996192625, 25178013826875, 678264862275, 813304020375, 6122798191125
Offset: 0
- Jean-François Alcover, Table of n, a(n) for n = 0..100
- N. E. Nørlund, Vorlesungen ueber Differenzenrechnung Springer 1924, p. 460.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924; page 460 [Annotated scanned copy of pages 144-151 and 456-463]
- G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, arXiv:1706.08381 [math.GM], 2017.
-
# NorlundD polynomials are defined in A260327.
seq(denom(NorlundD(2*n)(x)), n=0..27); # Peter Luschny, Jul 01 2019
-
NorlundD[nu_, n_] := (-2)^nu NorlundB[nu, n, n/2] // Simplify;
a[n_] := Module[{nb}, nb = NorlundB[2n, x]; nb/Coefficient[nb, x, 2n] // Together // Denominator];
(* or: *)
a[n_] := (2n)! SeriesCoefficient[(z/Sin[z])^x, {z, 0, 2n}] // Normal // Together // Denominator;
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 01 2019 *)
-
{ A260326(n) = my(t, Y); Y=y+O(y^(2*n+2)); t = (2*n)! * Pol( polcoeff( exp( x * log(Y/sinh(Y)) + O(x^(n+1)) ), 2*n, y ) ); denominator(content(t)); } \\ Max Alekseyev, Jul 04 2019
A290030
Leading coefficients of numerators of Norlund's B_{nu}^(n) polynomials (Nørlund, Tafel 5, p. 459).
Original entry on oeis.org
1, -1, 3, -1, 15, -3, 63, -9, 135, -15, 99, -9, 12285, -945, 405, -27, 6885, -405, 161595, -8505, 1403325, -66825, 419175, -18225, 24877125, -995085, 229635, -8505, 528525, -18225, 26101845, -841995, 214708725, -6506325, 1148175, -32805, 31479513975, -850797675
Offset: 0
-
a[n_] := NorlundB[n, x] // Together // Numerator // Coefficient[#, x, n]&;
Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Jun 30 2019 *)
-
[A100655_row(n)[n] for n in (0..37)] # Peter Luschny, Jul 01 2019
A358625
a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.
Original entry on oeis.org
1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0
Rationals: 1, 1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, ...
Note that a(68) = -4633713579924631067171126424027918014373353 but A120082(68) = -125235502160125163977598011460214000388469.
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]
- Peter Luschny, Table of n, a(n) for n = 0..300
- Arnold Adelberg, Shaofang Hong and Wenli Ren, Bounds of Divided Universal Bernoulli Numbers and Universal Kummer Congruences, Proceedings of the American Mathematical Society, Vol. 136(1), 2008, p. 61-71.
- Bernd C. Kellner, The structure of Bernoulli numbers, arXiv:math/0411498 [math.NT], 2004.
-
Concatenation([1, 1], List([2..45], n-> NumeratorRat(Bernoulli(n)/(n)))); # G. C. Greubel, Sep 19 2019
-
[1, 1] cat [Numerator(Bernoulli(n)/(n)): n in [2..45]]; // G. C. Greubel, Sep 19 2019
-
A358625 := n -> ifelse(n = 0, 1, numer(bernoulli(n, 1) / n)):
seq(A358625(n), n = 0.. 40);
# Alternative:
egf := 1 + x + log(1 - exp(-x)) - log(x): ser := series(egf, x, 42):
seq(numer(n! * coeff(ser, x, n)), n = 0..40);
-
Join[{1, 1}, Table[Numerator[BernoulliB[n] / n], {n, 2, 45}]]
-
a(n) = if (n<=1, 1, numerator(bernfrac(n)/n)); \\ Michel Marcus, Feb 24 2015
A163402
A Minkowski-type generalization of the factorial function: F(n,k) with k = 2.
Original entry on oeis.org
1, 1, 1, 3, 9, 135, 1215, 2835, 127575, 229635, 3444525, 1705039875, 107417512125, 13299311025, 4189282972875, 62839244593125, 188517733779375, 336504154796184375, 9085612179496978125, 2740105260483215625
Offset: 0
For n >= 0
F(n,0) 1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...
F(n,1) 1, 1, 1, 4, 2, 48, 16, 576, 144, 3840, ...
F(n,2) 1, 1, 1, 3, 9, 135, 1215, 2835, 127575, ...
F(n,3) 1, 1, 1, 1, 1, 1, 1, 5, 1, 25, 5, 35, ...
F(n,4) 1, 1, 1, 1, 1, 5, 25, 175, 4375, 4375, ...
F(n,5) 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 49, ...
-
F := proc(n,k) local L,p,i;
L := proc(n,u,r) local q,s,m; m:=n-r;
q:=u-r; s:=0; do if q>m then break fi;
s:=s+iquo(m,q); q:=q*u od; s end;
mul(p^add((-1)^i*L(n,p,i),i=0..k),
p = select(isprime,[$(k+1)..n]))^((-1)^k) end:
a(n) := n -> F(n,2);
-
F[n_, k_] := Module[{L, p, i}, L[n0_, u_, r_] := Module[{q, s, m}, m = n0-r; q = u-r; s = 0; While[True, If[q > m, Break[]]; s = s + Quotient[m, q]; q = q*u]; s]; Product[p^Sum[(-1)^i*L[n, p, i], {i, 0, k}], {p, Select[Range[k+1, n], PrimeQ]}]^((-1)^k)]; a[n_] := F[n, 2]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
-
def A163402(n):
def L(n, u, r):
m = n - r; q = u - r
s = 0
while(q <= m):
s += m//q
q *= u
return s
P = filter(is_prime, [3..n])
return mul(p^add((-1)^i*L(n, p, i) for i in (0..2)) for p in P)
print([A163402(n) for n in range(20)]) # Peter Luschny, Mar 13 2016
A178473
For n>=0, let n!^(4) = A202369(n+1) and, for 0<=m<=n, C^(4)(n,m) = n!^(4)/(m!^(4)*(n-m)!^(4)). The sequence gives triangle of numbers C^(4)(n,m) with rows of length n+1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 273, 273, 1, 1, 68, 9282, 68, 1, 1, 55, 1870, 1870, 55, 1, 1, 546, 15015, 3740, 15015, 546, 1, 1, 29, 7917, 1595, 1595, 7917, 29, 1
Offset: 0
Triangle begins
n/m.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1......1
.2..|..1......2......1
.3..|..1....273 ...273......1
.4..|..1.....68...9282.....68......1
.5..|..1.....55...1870...1870.....55......1
.6..|..1....546..15015...3740..15015....546....1
.7..|..1.....29...7917...1595...1595...7917...29.....1
.8..|
Original entry on oeis.org
1, 2, 4, 26, 18, 482, 266, 6050, 3114, 21122, 10730, 22178, 11226, 4455362, 2256338, 343874, 173610, 13643522, 6869842, 690621122, 347772738, 16250361602, 8187307306, 17146915106, 8584448890, 720152334722, 365024665978, 59381983394, 29700003082
Offset: 0
-
# A186431, uses program for A053657 written by Peter Luschny:
A053657 := proc(n) local P, p, q, s, r;
P := select(isprime, [$2..n]); r:=1;
for p in P do s := 0; q := p-1;
do if q > (n-1) then break fi;
s := s + iquo(n-1, q); q := q*p; od;
r := r * p^s; od; r end:
# Row sums:
a:= n-> add(A053657(n)/(A053657(k)*A053657(n-k)), k = 0..n):
seq (a(n), n = 0..22);
-
b[n_] := b[n] = Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[ Range[n]]}];
T[n_, k_] := b[n]/(b[k] b[n-k]);
a[n_] := Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 26 2019 *)
Comments