cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 506 results. Next

A046760 Wasteful numbers.

Original entry on oeis.org

4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 108, 110, 114
Offset: 1

Views

Author

Keywords

Comments

Write n as product of primes raised to powers, let D(n) = number of digits in product, l(n) = number of digits in n; sequence gives n such that D(n)>l(n).
A050252(a(n)) > A055642(a(n)). - Reinhard Zumkeller, Jun 21 2011

Examples

			For n = 125 = 5^3, l(n) = 3 but D(n) = 2. So 125 is not a term of this sequence. [clarified by _Derek Orr_, Jan 30 2015]
		

Crossrefs

Programs

  • Haskell
    a046760 n = a046760_list !! (n-1)
    a046760_list = filter (\n -> a050252 n > a055642 n) [1..]
    -- Reinhard Zumkeller, Aug 02 2013
    
  • Mathematica
    Cases[Range[115], n_ /; Length[Flatten[IntegerDigits[FactorInteger[n] /. 1 -> Sequence[]]]] > Length[IntegerDigits[n]]] (* Jean-François Alcover, Mar 21 2011 *)
  • PARI
    for(n=1,100,s="";F=factor(n);for(i=1,#F[,1],s=concat(s,Str(F[i,1]));s=concat(s,Str(F[i,2])));c=0;for(j=1,#F[,2],if(F[j,2]==1,c++));if(#digits(n)<#s-c,print1(n,", "))) \\ Derek Orr, Jan 30 2015
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A046760_gen(): # generator of terms
        return (n for n in count(1) if len(str(n)) < sum(len(str(p))+(len(str(e)) if e > 1 else 0) for p, e in factorint(n).items()))
    A046760_list = list(islice(A046760_gen(),20)) # Chai Wah Wu, Feb 18 2022

A075167 Number of edges in each rooted plane tree produced with the unranking algorithm presented in A075166, which is based on prime factorization.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 5, 4, 6, 5, 4, 3, 7, 4, 8, 5, 5, 6, 9, 4, 4, 7, 4, 6, 10, 5, 11, 4, 6, 8, 5, 5, 12, 9, 7, 5, 13, 6, 14, 7, 5, 10, 15, 5, 5, 5, 8, 8, 16, 5, 6, 6, 9, 11, 17, 6, 18, 12, 6, 4, 7, 7, 19, 9, 10, 6, 20, 5, 21, 13, 5, 10, 6, 8, 22, 6, 4, 14, 23, 7, 8, 15, 11, 7, 24, 6, 7, 11
Offset: 1

Views

Author

Antti Karttunen, Sep 13 2002

Keywords

Comments

Each n occurs A000108(n) times in total.

Crossrefs

Permutation of A072643 and A106457.
A253782 gives the positions where this sequence differs from A252464 (first time at n=16).
Cf. also A106490.

Formula

a(n) = A106457(A106442(n)). - Antti Karttunen, May 09 2005
From Antti Karttunen, Jan 16 2015: (Start)
a(1) = 0; for n>1: a(n) = a(A071178(n)) + (A061395(n) - A061395(A051119(n))) + A253783(A051119(n)).
Other identities.
For all n >= 2, a(n) = A055642(A075166(n))/2. [Half of the number of decimal digits in A075166(n).]
For all n >= 2, a(n) = A029837(1+A075165(n))/2. [Half of the binary width of A075165(n).]
For all n >= 1, a(n) = A000120(A075165(n)). [Thus also the binary weight of A075165(n), because half of the bits are zeros.]
(End)

Extensions

More terms from Antti Karttunen, May 09 2005

A100910 Table of number of occurrences in n of each decimal digit from 0 to 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0
Offset: 0

Views

Author

Rick L. Shepherd, Nov 21 2004

Keywords

Comments

Each row of this table has length 10 and corresponds to one term of A100909. n = 0 is normally represented as the single digit 0, so the first row here is 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.

Crossrefs

Cf. A100909 (similar but each row of A100910 provides one A100909 term).
Cf. A055642 (row sums), A055641 (column 0), A268643 (column 1), A316863 (column 2), A316864 (column 3), A316865 (column 4), A316866 (column 5), A316867 (column 6), A316868 (column 7), A316869 (column 8), A102683 (column 9).

Programs

  • Maple
    seq(seq(numboccur(k, convert(n,base,10)),k=0..9),n=0..100); # Robert Israel, Jul 08 2016
  • Mathematica
    A100910row[n_] := RotateRight[DigitCount[n]];
    Array[A100910row, 10, 0] (* Paolo Xausa, Jul 16 2025 *)
  • PARI
    T(n, k) = #select(x->x==k, digits(n))+!(n+k); \\ Jinyuan Wang, Mar 01 2020

Formula

From Robert Israel, Jul 08 2016: (Start)
a(n,k) = a(A059995(n),k) + (1 if A010879(n)=k, otherwise 0).
G.f. g(x,y) satisfies g(x,y) = ((1-x^10)/(1-x))*g(x^10,y) + (x^10-x)/(1-x) + x^10/(1-x^10) + x*y*(1-x^9*y^9)/((1-x^10)*(1-x*y)). (End)

A158232 Numbers which yield primes when "13" is prefixed or appended: N natural number is a member of the sequence, if P="13N" (prefixed 13) and A="N13" (appended 13) are prime.

Original entry on oeis.org

1, 19, 21, 27, 61, 103, 121, 127, 147, 159, 177, 183, 187, 217, 241, 259, 267, 327, 331, 337, 367, 381, 411, 477, 523, 553, 567, 577, 591, 633, 681, 687, 693, 709, 723, 759, 807, 829, 873, 903, 931, 997, 1009, 1011, 1041, 1059, 1129, 1149, 1213, 1231, 1251
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 14 2009

Keywords

Comments

It is conjectured and numerically examined that sequences of this type are infinite.
It is also conjectured that an infinite number of primes are terms of the sequence; first 20 primes are: 19, 61, 103, 127, 241, 331, 337, 367, 523, 577, 709, 829, 997, 1009, 1129, 1213, 1381, 1489, 1543, 1627.

Examples

			19: 1319 and 1913 are primes => a(2)=19;
7 is not a term: 137 is prime but 713=23 * 31 is not.
		

References

  • A. Weil, Number theory: an approach through history, Birkhäuser, 1984.
  • Richard E. Crandall, Carl Pomerance, Prime Numbers, Springer 2005.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996.

Crossrefs

Cf. A157772.

Programs

  • Maple
    A055642 := proc(n) max(1,ilog10(n)+1) ; end proc: cat2 := proc(a,b) a*10^A055642(b)+b ; end proc: A158232 := proc(n) option remember; local a; if n = 1 then 1; else for a from procname(n-1)+1 do if isprime(cat2(13,a)) and isprime(cat2(a,13)) then return a ; end if ; end do ; end if; end proc: seq(A158232(n),n=1..80) ; # R. J. Mathar, Nov 11 2009
  • Mathematica
    Select[Range[1300],And@@PrimeQ[{13 10^IntegerLength[#]+#,100#+13}]&] (* Harvey P. Dale, May 28 2012 *)

A004218 a(n) = log_10(n) rounded up.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of terms in the sequence A011557 (Powers of 10) that are less than n. For n > 1, a(n) is the number of digits in n-1. - Tanya Khovanova, Jun 22 2007

Examples

			From _M. F. Hasler_, Dec 07 2018: (Start)
log_10(1) = 0, therefore a(1) = 0.
log_10(2) = 0.301..., therefore a(2) = 1.
log_10(9) = 0.954..., therefore a(9) = 1.
log_10(10) = 1, therefore a(10) = 1.
log_10(11) = 1.04..., therefore a(11) = 2.
log_10(99) = 1.9956..., therefore a(99) = 2.
log_10(100) = 2, therefore a(100) = 2.
log_10(101) = 2.004..., therefore a(101) = 3. (End)
		

Crossrefs

Programs

  • Haskell
    a004218 n = if n == 1 then 0 else 1 + a004216 (n - 1)
    
  • Maple
    A004218 := proc(n)
        ceil(log[10](n)) ;
    end proc:
    seq(A004218(n),n=1..120) ; # R. J. Mathar, May 16 2023
  • Mathematica
    Array[Ceiling[Log10[#]] &, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    A004218(n)=logint(n-(n>1),10)+1 \\ M. F. Hasler, Dec 07 2018

Formula

a(1) = 0, a(n) = 1 + A004216(n-1) for n > 1. - Reinhard Zumkeller, Dec 22 2012
a(n) = A055642(n-1) for all n > 1. a(n+1) is the number of decimal digits of n if 0 is considered to have 0 digits. - M. F. Hasler, Dec 07 2018

A005341 Length of n-th term in Look and Say sequences A005150 and A007651.

Original entry on oeis.org

1, 2, 2, 4, 6, 6, 8, 10, 14, 20, 26, 34, 46, 62, 78, 102, 134, 176, 226, 302, 408, 528, 678, 904, 1182, 1540, 2012, 2606, 3410, 4462, 5808, 7586, 9898, 12884, 16774, 21890, 28528, 37158, 48410, 63138, 82350, 107312, 139984, 182376, 237746, 310036, 403966, 526646, 686646
Offset: 1

Views

Author

Keywords

Comments

Row lengths of A034002 and of A220424. - Reinhard Zumkeller, Dec 15 2012
Satisfies a recurrence of order 72. The characteristic polynomial of this recurrence is a degree-72 polynomial that factors as (x-1)*q(x), where q(x) is a degree-71 polynomial. The unique positive real root of q is approximately 1.3036 and is called Conway's constant (A014715), which equals the limiting ratio a(n+1)/a(n). - Nathaniel Johnston, Apr 12 2018 [Corrected by Richard Stanley, Dec 26 2018]

References

  • J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Communications, Springer, NY 1987, pp. 173-188.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a005341 = length . a034002_row  -- Reinhard Zumkeller, Dec 15 2012
  • Mathematica
    RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 1 ][ [ n ] ]; Table[ Length[ F[ n ] ], {n, 1, 51} ]
    p = {12, -18, 18, -18, 18, -20, -22, 31, 15, -4, -4, -19, 62, -50, -21, -11, 41, 54, -56, -44, 15, -27, -15, 45, -8, 89, -64, -66, -25, 38, 126, -39, -32, -33, -65, 107, 14, 16, -13, -79, 7, 42, 12, 8, -26, -9, 35, -23, -20, -30, 34, 58, -1, -20, -36, -6, 13, 8, 6, 3, -1, -4, -1, -4, -5, -1, 8, 6, 0, -6, -4, 1, 0, 1, 1, 1, 1, -1, -1}; q = {-6, 9, -9, 18, -16, 11, -14, 8, -1, 5, -7, -2, -8, 14, 5, 5, -19, -3, 6, 7, 6, -16, 7, -8, 22, -17, 12, -7, -5, -7, 8, -4, 7, 9, -13, 4, 6, -14, 14, -19, 7, 13, -2, 4, -18, 0, 1, 4, 12, -8, 5, 0, -8, -1, -7, 8, 5, 2, -3, -3, 0, 0, 0, 0, 2, 1, 0, -3, -1, 1, 1, 1, -1}; gf = Fold[x #1 + #2 &, 0, p]/Fold[x #1 + #2 &, 0, q]; CoefficientList[Series[gf, {x, 0, 99}], x] (* Peter J. C. Moses, Jun 23 2013 *)
  • PARI
    print1(a=1);for(i=2,100,print1(",",#Str(a=A005150(2,a))))  \\ M. F. Hasler, Nov 08 2011
    

Formula

a(n) = A055642(A005150(n)) = A055642(A007651(n)). - Reinhard Zumkeller, Dec 15 2012

Extensions

More terms from Mike Keith

A019523 Concatenation of Fibonacci(1) through Fibonacci(n).

Original entry on oeis.org

1, 11, 112, 1123, 11235, 112358, 11235813, 1123581321, 112358132134, 11235813213455, 1123581321345589, 1123581321345589144, 1123581321345589144233, 1123581321345589144233377, 1123581321345589144233377610, 1123581321345589144233377610987
Offset: 1

Views

Author

R. Muller

Keywords

Comments

For n<=800, only a(2) and a(4) are primes. - Dmitry Kamenetsky, Feb 25 2009
a(n) has about kn(n+1) digits, where k = log phi/log 100 = 0.10449... - Charles R Greathouse IV, Sep 19 2012

References

  • S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.

Crossrefs

Programs

  • Haskell
    a019523 n = read $ concatMap show $ take n $ tail a000045_list :: Integer
    -- Reinhard Zumkeller, Mar 01 2014
    
  • Magma
    [Seqint(Reverse(&cat[Reverse(Intseq(Fibonacci(k))): k in [1..n]])): n in [1..20]]; // Vincenzo Librandi, Dec 18 2016
  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits[Fibonacci[Range[n]]]]], {n,25}] (* G. C. Greubel, Nov 30 2016 *)

Formula

a(n) = a(n-1)*10^A055642(A000045(n)) + A000045(n). - José de Jesús Camacho Medina, Dec 16 2016

A030466 Squares that are concatenations of two consecutive nonzero numbers.

Original entry on oeis.org

183184, 328329, 528529, 715716, 60996100, 1322413225, 4049540496, 106755106756, 453288453289, 20661152066116, 29752082975209, 2214532822145329, 2802768328027684, 110213248110213249, 110667555110667556, 147928995147928996, 178838403178838404, 226123528226123529
Offset: 1

Views

Author

Keywords

References

  • British Mathematical Olympiad, 1993, Round 1, Question 1: "Find, showing your method, a six-digit integer n with the following properties: (i) n is a perfect square, (ii) the number formed by the last three digits of n is exactly one greater than the number formed by the first three digits of n. (Thus n might look like 123124, although this is not a square.)"
  • Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 1 of the British Mathematical Olympiad 1993, page 164.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := IntegerQ[Sqrt[n*10^Floor[1 + Log10[n + 1]] + n + 1]]; (* Robert G. Wilson v, Dec 27 2017 *)
  • PARI
    lista(nn) = forstep(n=183, nn, [3, 5, 7, 5, 3, 1, 4, 7, 5, 3, 5, 7, 5, 3, 5, 7, 5, 3, 5, 7, 4, 1], my(s = eval(concat(Str(n), Str(n+1)))); if(issquare(s), print1(s, ", "))) \\ Iain Fox, Dec 27 2017
    
  • PARI
    eea(x, y) = my(a=max(x,y), b=min(x,y), s=0, so=1, st, r=b, ro=a, rt, q, t); while(r, q=ro\r; rt=r; r=ro-q*r; ro=rt; st=s; s=so-q*s; so=st); t=(ro-so*a)\b; if(x>y, [so, t], [t, so]) \\ Extended Euclidean Algorithm
    lista(nn) = my(res=Set(), b, f2, c, s); for(d=3, nn, b=10^d+1; fordiv(b, f, if(f!=1 && f!=b, f2=b/f; if(gcd(f, f2)==1, c=eea(f, f2); if(c[1]<0, s=f*(f2+2*c[1])*f2*(f-2*c[2])+1, s=f*(2*c[1])*f2*(-2*c[2])+1); if(#digits(s)==d*2, res=setunion(res, Set(s))))))); Vec(res) \\ (Will find all values of length nn*2 or shorter) Iain Fox, Oct 16 2021

Formula

a(n) = A030465(n)*(10^A055642(A030465(n))+1)+1. - Iain Fox, Oct 16 2021

Extensions

a(15)-a(17) from Arkadiusz Wesolowski, Apr 02 2014
a(18) from Iain Fox, Dec 27 2017

A050252 Number of digits in the prime factorization of n (counting terms of the form p^1 as p).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 4, 2, 3, 3, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 2, 3, 4, 2, 4, 3, 3, 2, 4, 2, 3, 3, 4, 3, 4, 2, 3, 2, 3, 2, 4, 3, 3, 3, 4, 2, 4, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 3, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. also A377369 (analog for base 2).

Programs

  • Haskell
    a050252 1 = 1
    a050252 n = sum $ map a055642 $
                (a027748_row n) ++ (filter (> 1) $ a124010_row n)
    -- Reinhard Zumkeller, Aug 03 2013, Jun 21 2011
    
  • Mathematica
    nd[n_]:=Total@IntegerLength@Select[Flatten@FactorInteger[n],#>1&];Table[If[n==1,1,nd[n]],{n,102}] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
  • Python
    from sympy import factorint
    def a(n): return 1 if n == 1 else sum(len(str(p))+(len(str(e)) if e>1 else 0) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 103)]) # Michael S. Branicky, Dec 27 2024

Formula

a(A192010(n)) = n and a(m) != n for m < A192010(n);
a(A046759(n)) < A055642(A046759(n)); a(A046758(n)) = A055642(A046758(n)); a(A046760(n)) > A055642(A046760(n)). [Reinhard Zumkeller, Jun 21 2011]

A082776 a(1) = 1, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

1, 11, 121, 12221, 12233221, 122344443221, 15223441414432251, 15223441429655692414432251
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2003

Keywords

Comments

a(n)<=(10^A055642(a(n-1))+1)*a(n-1). If a(n-1) > 10 and the last digit of a(n-1) <= 4, then a(n)<=(10^(A055642(a(n-1))-1)+1)*a(n-1). - Chai Wah Wu, Mar 06 2021

Crossrefs

Extensions

Corrected by Ray Chandler, Oct 13 2003
a(8) from Sean A. Irvine, Apr 19 2010
Previous Showing 91-100 of 506 results. Next