cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A066259 a(n) = Fibonacci(n)*Fibonacci(n+1)^2.

Original entry on oeis.org

1, 4, 18, 75, 320, 1352, 5733, 24276, 102850, 435655, 1845504, 7817616, 33116057, 140281700, 594243090, 2517253683, 10663258432, 45170286424, 191344405725, 810547906740, 3433536036866, 14544692047439, 61612304237568, 260993908980000, 1105587940186225, 4683345669678532
Offset: 1

Views

Author

Len Smiley, Dec 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    First[#]Last[#]^2&/@Partition[Fibonacci[Range[30]],2,1]  (* Harvey P. Dale, Mar 04 2011 *)
  • PARI
    a(n) = { fibonacci(n) * fibonacci(n+1)^2 } \\ Harry J. Smith, Feb 07 2010

Formula

O.g.f.: (x+x^2)/(1-3x-6x^2+3x^3+x^4) = x(1+x)/((1+x-x^2)(1-4x-x^2)).
a(n) = second term from left in M^n * [1 0 0 0] where M = the 4 X 4 upper triangular Pascal's triangle matrix [1 3 3 1 / 1 2 1 0 / 1 1 0 0 / 1 0 0 0]. E.g., a(4) = 75 since M^4 * [1 0 0 0] = [125 75 45 27] = [A056570(5) a(4) A066258(3) A056570(4)]. - Gary W. Adamson, Oct 31 2004
a(n) = (1/5)*(F(3n+2) - (-1)^n*F(n-1)). - Ralf Stephan, Jul 26 2005
a(n) = (F(n+2)^3 - 2*F(n)^3 - F(n-1)^3)/6. - Greg Dresden, Aug 12 2022

A105317 Powers of Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 9, 13, 16, 21, 25, 27, 32, 34, 55, 64, 81, 89, 125, 128, 144, 169, 233, 243, 256, 377, 441, 512, 610, 625, 729, 987, 1024, 1156, 1597, 2048, 2187, 2197, 2584, 3025, 3125, 4096, 4181, 6561, 6765, 7921, 8192, 9261, 10946, 15625, 16384, 17711
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2005

Keywords

Comments

The subset of nontrivial Fibonacci powers [numbers A000045(k)^n which are not in A000045] starts 4, 9, 16, 25, 27, 32, 64, 81, 125, 128, 169, 243, 256, 441, 512, 625, 729, 1024, 1156... - R. J. Mathar, Jan 26 2015. These are the initial terms of A254719. - Reinhard Zumkeller, Feb 06 2015

Examples

			2197 = 13^3 = A000045(7)^3, therefore 2197 is a term.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a105317 n = a105317_list !! (n-1)
    a105317_list = 0 : 1 : h 1 (drop 4 a000045_list) (singleton (2, 2)) where
      h y xs'@(x:xs) s
        | x < ff    = h y xs (insert (x, x) s)
        | ff == y   = h y xs' s'
        | otherwise = ff : h ff xs' (insert (f * ff, f) s')
        where ((ff, f), s') = deleteFindMin s
    -- Reinhard Zumkeller, Feb 06 2015
    
  • Maple
    N:= 10^6: # to get all terms <= N
    select(`<=`,{0,1,seq(seq(combinat:-fibonacci(i)^j, i = 3 ..floor(log[phi](sqrt(5)*N^(1/j)+1))),j=1..ilog2(N))},N);
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, Jan 26 2015
  • Mathematica
    lim = 10^5; t = Table[f = Fibonacci[n]; f^Range[Floor[Log[lim]/Log[f]]], {n, 3, Ceiling[Log[GoldenRatio, lim] + 1]}]; Union[{0, 1}, Flatten[t]] (* T. D. Noe, Sep 27 2011 *)
  • PARI
    list(lim)=my(v=List([0]),k=1,f,t); while(k<=lim, listput(v,k); k*=2); k=3; while(k<=lim, listput(v,k); k*=3); k=5; while(k<=lim, listput(v,k); k*=5); k=6; while((f=fibonacci(k++))<=lim, t=1; while((t*=f)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Oct 03 2016

A056574 Seventh power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 128, 2187, 78125, 2097152, 62748517, 1801088541, 52523350144, 1522435234375, 44231334895529, 1283918464548864, 37281334283719577, 1082404156823183753, 31427428360210000000, 912473096871571914483
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

A divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Seventh row of array A103323.

Programs

Formula

a(n) = F(n)^7, where F(n) = A000045(n).
G.f.: x*p(7, x)/q(7, x) with p(7, x) := sum_{m=0..6} A056588(6, m)*x^m = 1 - 20*x - 166*x^2 + 318*x^3 + 166*x^4 - 20*x^5 - x^6 and q(7, x) := sum_{m=0..8} A055870(8, m)*x^m = (1 + x - x^2)*(1 - 4*x - x^2)*(1 + 11*x - x^2)*(1 - 29*x - x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..8} A055870(8, m)*a(n-m) = 0, n >= 8; inputs: a(n), n=0..7. a(n) = 21*a(n-1) + 273*a(n-2) - 1092*a(n-3) - 1820*a(n-4) + 1092*a(n-5) + 273*a(n-6) - 21*a(n-7) - a(n-8).
a(n+1) = F(n)^7+F(n+1)^7+7*F(n)*F(n+1)*F(n+2)*[2*F(n+1)^2-(-1)^n]^2 = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^7, for n>=0 (This is Theorem 2.3 (iv) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015

A110224 a(n) = Fibonacci(n)^3 + Fibonacci(n+1)^3.

Original entry on oeis.org

1, 2, 9, 35, 152, 637, 2709, 11458, 48565, 205679, 871344, 3690953, 15635321, 66231970, 280563633, 1188485803, 5034507976, 21326515877, 90340574445, 382688808866, 1621095817661, 6867072066967, 29089384105824
Offset: 0

Views

Author

Paul Barry, Jul 16 2005

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(n)^3 + Fibonacci(n+1)^3: n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
    
  • Mathematica
    Total/@Partition[Fibonacci[Range[0,30]]^3,2,1] (* or *) LinearRecurrence [{3,6,-3,-1},{1,2,9,35},30] (* Harvey P. Dale, May 29 2013 *)
  • PARI
    a(n)=fibonacci(n)^3+fibonacci(n+1)^3 \\ Charles R Greathouse IV, Jun 05 2011
    
  • Sage
    [sum(fibonacci(n+k)^3 for k in (0..1)) for n in (0..30)] # G. C. Greubel, Mar 18 2019

Formula

G.f.: (1 - x - 3*x^2 - x^3)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4) = (1 - x - 3*x^2 - x^3)/((1 + x - x^2)*(1 - 4x - x^2)).
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4).
a(n) = (3*(-1)^n*Fibonacci(n-1) + 2*Fibonacci(3*n+2))/5.
a(n) = Fibonacci(n+2)*A061646(n). - Greg Dresden, Sep 04 2025

A215039 a(n) = Fibonacci(2*n)^3, n>=0.

Original entry on oeis.org

0, 1, 27, 512, 9261, 166375, 2985984, 53582633, 961504803, 17253512704, 309601747125, 5555577996431, 99690802348032, 1788878864685457, 32100128763082731, 576013438873664000, 10336141770970357629, 185474538438612378103
Offset: 0

Views

Author

Wolfdieter Lang, Aug 10 2012

Keywords

Comments

Bisection (even part) of A056570. From this follows the o.g.f., and its partial fraction decomposition leads to the explicit formula given below. The recurrences for F(2*n) and F(6*n)/8 are used in this computation. They follow from the fact that F(2*n) = S(n-1,3), and F(6*n)/8 = S(n-1,18), with Chebyshev's S(n,x) = U(n,x/2) polynomial of the second kind (see A001906 and A049660, respectively).

Crossrefs

Cf. A000045, A056570, A163198 (partial sums).

Programs

  • GAP
    List([0..20], n-> Fibonacci(2*n)^3 ); # G. C. Greubel, Dec 22 2019
  • Magma
    [Fibonacci(2*n)^3: n in [0..20]]; // G. C. Greubel, Dec 22 2019
    
  • Maple
    with(combinat); seq( fibonacci(2*n)^3, n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    Fibonacci[2*(Range[21]-1)]^3 (* G. C. Greubel, Dec 22 2019 *)
  • PARI
    vector(21, n, fibonacci(2*(n-1)) ); \\ G. C. Greubel, Dec 22 2019
    
  • Sage
    [fibonacci(2*n)^3 for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = F(2*n)^3, n>=0, with F=A000045.
O.g.f.: x*(1+6*x+x^2)/((1-3*x+x^2)*(1-18*x+x^2)) (from the bisection (even part) of A056570).
a(n) = (F(6*n) - 3*F(2*n))/5, n>=0.
a(n+2) - 18*a(n+1) + a(n) - 9*F(2*(n+1)) = 0, n>=0. From the F_n^3 recurrence (see a comment and references on A055870, use row n=4) together with the recurrence appearing in the solution of exercise 6.58, p. 315, on p. 556 of the second edition of the Graham-Knuth-Patashnik book (reference given on A007318), both with n -> 2*n. See also Koshy's book (reference given on A065563) p. 87, 1. and p. 89, 32. (with a - sign) and 33. - Wolfdieter Lang, Aug 11 2012

A056585 Eighth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 256, 6561, 390625, 16777216, 815730721, 37822859361, 1785793904896, 83733937890625, 3936588805702081, 184884258895036416, 8686550888106661441, 408066367122340274881, 19170731299728100000000
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

A divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^8, F(n)=A000045(n).
G.f.: x*p(8, x)/q(8, x) with p(8, x) := sum_{m=0..7} A056588(7, m)*x^m = (1+x)*(1 - 34*x - 458*x^2 + 2242*x^3 - 458*x^4 - 34*x^5 + x^6) and q(8, x) := sum_{m=0..9} A055870(9, m)*x^m = (1-x)*(1 + 3*x + x^2)*(1 - 7*x + x^2)*(1 + 18*x + x^2)*(1 - 47*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..9} A055870(9, m)*a(n-m) = 0, n >= 9; inputs: a(n), n=0..8. a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
a(n+1) = 8*F(n)^2*F(n+1)^2*[F(n)^4+F(n+1)^4+4*F(n)^2*F(n+1)^2+3*F(n)*F(n+1)*F(n+2)]-[F(n)^8+F(n+2)^8]+2*[2*F(n+1)^2-(-1)^n]^4 = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^8, for n>=0 (This is Theorem 2.2 (vii) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015

A099014 a(n) = Fibonacci(n)*(Fibonacci(n-1)^2 + Fibonacci(n+1)^2).

Original entry on oeis.org

0, 1, 5, 20, 87, 365, 1552, 6565, 27825, 117844, 499235, 2114729, 8958240, 37947545, 160748653, 680941780, 2884516383, 12219006325, 51760543280, 219261176861, 928805254905, 3934482189716, 16666734024715, 70601418270865
Offset: 0

Views

Author

Paul Barry, Sep 22 2004

Keywords

Comments

Form the matrix A=[1,1,1,1;3,2,1,0;3,1,0,0;1,0,0,0]=(binomial(3-j,i)). Then a(n)=(2,3)-element of A^n.

Crossrefs

Programs

  • Magma
    [Fibonacci(n)*(Fibonacci(n-1)^2+Fibonacci(n+1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
    
  • Mathematica
    CoefficientList[Series[x*(1 + 2*x - x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *)
    Join[{0},#[[2]](#[[1]]^2+#[[3]]^2)&/@Partition[Fibonacci[ Range[ 0,30]],3,1]] (* or *) LinearRecurrence[{3,6,-3,-1},{0,1,5,20},30] (* Harvey P. Dale, Oct 17 2021 *)
  • PARI
    a(n)=fibonacci(n)*(fibonacci(n-1)^2+fibonacci(n+1)^2) \\ Charles R Greathouse IV, Jun 05 2011

Formula

G.f.: x*(1+2*x-x^2)/(1-3*x-6*x^2+3*x^3+x^4) = x*(1+2*x-x^2)/((1+x-x^2)*(1-4*x-x^2)).
a(n) = Sum_{k=0..n} (-1)^(k+1)*Fib(k)*(0^(n-k) + 6*A001076(n-k)).
a(n) = ((-1)^n*Fib(n) + 3*Fib(3*n))/5. - Ehren Metcalfe, May 21 2016

A220362 a(n) = Fibonacci(n-1) * Fibonacci(n) * Fibonacci(n+2).

Original entry on oeis.org

0, 3, 10, 48, 195, 840, 3536, 15015, 63546, 269280, 1140535, 4831632, 20466720, 86699067, 367262090, 1555748880, 6590255259, 27916773720, 118257343984, 500946159615, 2122041966330, 8989114051008, 38078498128175, 161303106631968, 683290924545600
Offset: 1

Views

Author

Michel Marcus, Dec 12 2012

Keywords

Comments

An integral pentagon is a pentagon with integer sides and diagonals. There are two types of such pentagons.
Type B have sides A056570(n+2), A056570(n+2), A220363(n+2), A056570(n+2), A056570(n+2), and opposite diagonals a(n+2), A066258(n+2), A066258(n+2), A066258(n+2), a(n+2), for n=1,2,...

References

  • R. K. Guy, Unsolved Problems in Number Theory, D20.

Programs

  • Mathematica
    Table[Fibonacci[n - 1] * Fibonacci[n] * Fibonacci[n + 2], {n, 30}] (* T. D. Noe, Dec 13 2012 *)
    #[[1]]*#[[2]]*#[[4]]&/@Partition[Fibonacci[Range[0,30]],4,1] (* Harvey P. Dale, Jan 16 2016 *)
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(3+x)/((x^2-x-1)*(x^2+4*x-1)))) \\ Altug Alkan, Mar 26 2016

Formula

a(n) = 3*a(n-1) + 6*a(n-2) -3*a(n-3) - a(n-4); g.f.: (3x+x^2)/(1-3x-6x^2+3x^2+x^4) = x(3+x)/( (x^2-x-1)(x^2+4x-1) ). [Ron Knott, Jun 27 2013]
a(n) = 2*(-1)^n*Lucas(n-3)/25 + 3*(-1)^n*Lucas(n+1)/25 + Fibonacci(3*n+1)/5 = (1/5)*(-(-1)^n*Fibonacci(n-1) + 3*(-1)^n*Fibonacci(n) + Fibonacci(3*n+1)). - Ehren Metcalfe, Mar 26 2016

A346513 a(n) = Fibonacci(n+1)^3 - Fibonacci(n)^3.

Original entry on oeis.org

1, 0, 7, 19, 98, 387, 1685, 7064, 30043, 127071, 538594, 2281015, 9663353, 40933296, 173398367, 734523803, 3111498370, 13180509531, 55833549037, 236514685384, 1001892323411, 4244083925895, 17978228112962, 76156996238639, 322606213292593, 1366581849044832
Offset: 0

Views

Author

Lamine Ngom, Jul 21 2021

Keywords

Comments

The version related to sum of consecutive Fibonacci numbers cubed is given by A110224.
a(n+1) is divisible by Fibonacci(n). The related quotient sequence is provided by A061646, from its 3rd term.

Crossrefs

Cf. A056570 (partial sums).

Programs

  • Mathematica
    Differences[Fibonacci[Range[0, 26]]^3] (* Amiram Eldar, Jul 22 2021 *)
  • PARI
    a(n) = fibonacci(n+1)^3 - fibonacci(n)^3; \\ Michel Marcus, Jul 22 2021

Formula

a(n) = F(n-1)*(2*F(n+1)^2+(-1)^(n+1)), n>0.
a(n) = F(n-1)*A061646(n+1).
G.f.: (x-1)*(x^2+2*x-1)/((x^2+4*x-1)*(x^2-x-1)). - Alois P. Heinz, Jul 21 2021
For n >= 2, a(n) is the numerator of the continued fraction [1,...,1, 3 ,1,...,1, 2 ,1,...,1] with three runs of 1's each of length n-2. For example, a(5)=387 which is the numerator of the continued fraction [1,1,1, 3 ,1,1,1, 2 ,1,1,1]. - Greg Dresden, Jan 01 2022

A056586 Ninth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 512, 19683, 1953125, 134217728, 10604499373, 794280046581, 60716992766464, 4605366583984375, 350356403707485209, 26623333280885243904, 2023966356928852115753, 153841020405122283630137
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^9, F(n)=A000045(n).
G.f.: x*p(9, x)/q(9, x) with p(9, x) := sum_{m=0..8} A056588(8, m)*x^m = 1 - 54*x - 1413*x^2 + 9288*x^3 + 17840*x^4 - 9288*x^5 - 1413*x^6 + 54*x^7 + x^8 and q(9, x) := sum_{m=0..10} A055870(10, m)*x^m = (1 - x - x^2)*(1 + 4*x - x^2)*(1 - 11*x - x^2)*(1 + 29*x - x^2)*(1 - 76*x - x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..10} A055870(10, m)*a(n-m) = 0, n >= 10; inputs: a(n), n=0..9. a(n) = 55*a(n-1) + 1870*a(n-2) - 19635*a(n-3) - 85085*a(n-4) + 136136*a(n-5) + 85085*a(n-6) - 19635*a(n-7) - 1870*a(n-8) + 55*a(n-9) + a(n-10).
Previous Showing 11-20 of 33 results. Next