cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 95 results. Next

A173133 a(n) = Sinh[(2n-1) ArcSinh[n]].

Original entry on oeis.org

0, 1, 38, 4443, 1166876, 546365045, 400680904674, 423859315570607, 611038907405197432, 1151555487914640463209, 2748476184146759127540190, 8102732939160371170806346243, 28915133156938367486730067779348
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcSinh[n]]], {n, 0, 20}] (* Artur Jasinski *)
    Round[Table[1/2 (n - Sqrt[1 + n^2])^(2 n - 1) + 1/2 (n + Sqrt[1 + n^2])^(2 n - 1), {n, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)

Formula

a(n) = 1/2 (n - sqrt(1 + n^2))^(2 n - 1) + 1/2 (n + sqrt(1 + n^2))^(2 n - 1). - Artur Jasinski, Feb 14 2010

Extensions

Minor edits by Vaclav Kotesovec, Apr 05 2016

A190405 Decimal expansion of Sum_{k>=1} (1/2)^T(k), where T=A000217 (triangular numbers); based on column 1 of the natural number array, A000027.

Original entry on oeis.org

6, 4, 1, 6, 3, 2, 5, 6, 0, 6, 5, 5, 1, 5, 3, 8, 6, 6, 2, 9, 3, 8, 4, 2, 7, 7, 0, 2, 2, 5, 4, 2, 9, 4, 3, 4, 2, 2, 6, 0, 6, 1, 5, 3, 7, 9, 5, 6, 7, 3, 9, 7, 4, 7, 8, 0, 4, 6, 5, 1, 6, 2, 2, 3, 8, 0, 1, 4, 4, 6, 0, 3, 7, 3, 3, 3, 5, 1, 7, 7, 5, 6, 0, 0, 3, 6, 4, 1, 7, 1, 6, 2, 3, 3, 5, 9, 1, 3, 3, 0, 8, 6, 0, 8, 9, 7, 3, 5, 3, 1, 6, 3, 4, 3, 6, 1, 9, 4, 6, 1
Offset: 0

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

See A190404.
Binary expansion is .1010010001... (A023531). - Rick L. Shepherd, Jan 05 2014
From Amiram Eldar, Dec 07 2020: (Start)
This constant is not a quadratic irrational (Duverney, 1995).
The Engel expansion of this constant are the powers of 2 (A000079) above 1. (End)

Examples

			0.64163256065515386629...
		

Crossrefs

A190404: (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T = A000217 (triangular numbers).
A190405: Sum_{k>=1} (1/2)^T(k), where T = A000217 (triangular numbers).
A190406: Sum_{k>=1} (1/2)^S(k-1), where S = A001844 (centered square numbers).
A190407: Sum_{k>=1} (1/2)^V(k), where V = A058331 (1 + 2*k^2).
Cf. A000079.

Programs

  • Mathematica
    RealDigits[EllipticTheta[2, 0, 1/Sqrt[2]]/2^(7/8) - 1, 10, 120] // First (* Jean-François Alcover, Feb 12 2013 *)
    RealDigits[Total[(1/2)^Accumulate[Range[50]]],10,120][[1]] (* Harvey P. Dale, Oct 18 2013 *)
    (* See also A190404 *)
  • PARI
    th2(x)=2*x^.25 + 2*suminf(n=1,x^(n+1/2)^2)
    th2(sqrt(.5))/2^(7/8)-1 \\ Charles R Greathouse IV, Jun 06 2016
  • Sage
    def A190405(b):  # Generate the constant with b bits of precision
        return N(sum([(1/2)^(j*(j+1)/2) for j in range(1,b)]),b)
    A190405(409) # Danny Rorabaugh, Mar 25 2015
    

A173134 a(n) = Sinh[(2n-1)ArcCosh[n]]^2.

Original entry on oeis.org

-1, 0, 675, 11309768, 878801253135, 208241673295152024, 118270071682117442287235, 137788343929239264227213170608, 295355309179742652677310128859789375
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcCosh[n]]^2], {n, 0, 20}]

Formula

a(n) ~ 2^(4*n-4) * n^(4*n-2). - Vaclav Kotesovec, Apr 05 2016

A268581 a(n) = 2*n^2 + 8*n + 5.

Original entry on oeis.org

5, 15, 29, 47, 69, 95, 125, 159, 197, 239, 285, 335, 389, 447, 509, 575, 645, 719, 797, 879, 965, 1055, 1149, 1247, 1349, 1455, 1565, 1679, 1797, 1919, 2045, 2175, 2309, 2447, 2589, 2735, 2885, 3039, 3197, 3359, 3525, 3695, 3869, 4047, 4229, 4415, 4605
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Apr 10 2016

Keywords

Comments

Also, numbers m such that 2*m + 6 is a square.
All the terms end with a digit in {5, 7, 9}, or equivalently, are congruent to {5, 7, 9} mod 10. - Stefano Spezia, Aug 05 2021

Crossrefs

Cf. numbers n such that 2*n + k is a perfect square: A093328 (k=-6), A097080 (k=-5), no sequence (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), this sequence (k=6), A059993 (k=7), A147973 (k=8), A139570 (k=9), no sequence (k=10), A222182 (k=11), A152811 (k=12), A181570 (k=13).

Programs

  • Magma
    [2*n^2+8*n+5: n in [0..60]];
    
  • Magma
    [n: n in [0..6000] | IsSquare(2*n+6)];
    
  • Mathematica
    Table[2 n^2 + 8 n + 5, {n, 0, 50}] (* Vincenzo Librandi, Apr 13 2016 *)
    LinearRecurrence[{3,-3,1},{5,15,29},50] (* Harvey P. Dale, Jan 18 2017 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(2*n^2+8*n+5, ", ")); \\ Altug Alkan, Apr 10 2016
    
  • Sage
    [2*n^2 + 8*n + 5 for n in [0..46]] # Stefano Spezia, Aug 04 2021

Formula

From Vincenzo Librandi, Apr 13 2016: (Start)
G.f.: (5-x^2)/(1-x)^3.
a(n) = 2*(n+2)^2 - 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(5 + 10*x + 2*x^2). - Stefano Spezia, Aug 03 2021

Extensions

Changed offset from 1 to 0, adapted formulas and programs by Bruno Berselli, Apr 13 2016

A271625 a(n) = = 2*(n+1)^2 - 5.

Original entry on oeis.org

3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n + 10 is a perfect square.

Crossrefs

Numbers h such that 2*h + k is a perfect square: A294774 (k=-9), A255843 (k=-8), A271649 (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), this sequence (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Programs

  • Magma
    [ 2*n^2 + 4*n - 3: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n+10)];
    
  • Mathematica
    Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
    2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
  • PARI
    x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • Python
    def A271625(n): return 2*pow(n+1,2) - 5
    print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025

Formula

G.f.: x*(3 + 4*x - 3*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = 13/30 - Pi*cot(sqrt(5/2)*Pi)/(2*sqrt(10)) = 0.5627678459924... . - Vaclav Kotesovec, Apr 11 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(2*x^2 + 6*x - 3) + 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
a(n) = 2*A000290(n+1) - 5. - G. C. Greubel, Jan 21 2025

Extensions

Name simplified by G. C. Greubel, Jan 21 2025

A166926 A000004 preceded by 1, 2, 4.

Original entry on oeis.org

1, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Klaus Brockhaus, Oct 23 2009

Keywords

Comments

Inverse binomial transform of A058331.

Crossrefs

Cf. A000004 (zero sequence), A058331 (2*n^2+1), A130706 (1, 2, 0, 0, 0, 0, ...), A130779 (1, 1, 2, 0, 0, 0, 0, ...).

Programs

  • PARI
    {concat([1,2,4],vector(102))}

Formula

a(0) = 1, a(1) = 2, a(2) = 4, a(n) = 0 for n > 2.
G.f.: (1+2*x+4*x^2).
a(n) = 2^n mod 8. - Ridouane Oudra, Apr 08 2025

A212656 a(n) = 5*n^2 + 1.

Original entry on oeis.org

1, 6, 21, 46, 81, 126, 181, 246, 321, 406, 501, 606, 721, 846, 981, 1126, 1281, 1446, 1621, 1806, 2001, 2206, 2421, 2646, 2881, 3126, 3381, 3646, 3921, 4206, 4501, 4806, 5121, 5446, 5781, 6126, 6481, 6846, 7221, 7606, 8001, 8406, 8821, 9246, 9681, 10126, 10581, 11046, 11521, 12006, 12501
Offset: 0

Views

Author

Alonso del Arte, May 23 2012

Keywords

Comments

Z[sqrt(-5)] is not a unique factorization domain, and some of the numbers in this sequence have two different factorizations in that domain, e.g., 21 = 3 * 7 = (1 + 2*sqrt(-5))*(1 - 2*sqrt(-5)). And of course some primes in Z are composite in Z[sqrt(-5)], like 181 = (1 + 6*sqrt(-5))*(1 - 6*sqrt(-5)).
These are pentagonal-star numbers. - Mario Cortés, Oct 26 2020

References

  • Benjamin Fine & Gerhard Rosenberger, Number Theory: An Introduction via the Distribution of Primes, Boston: Birkhäuser, 2007, page 268.

Crossrefs

Cf. A137530 (primes of the form 1+5*n^2).

Programs

Formula

a(n) = 5*n^2 + 1 = (1 + n*sqrt(-5))*(1 - n*sqrt(-5)).
G.f.: (1+3*x+6*x^2)/(1-x)^3. - Bruno Berselli, May 23 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 10 2012
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(5))*coth(Pi/sqrt(5)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(5))*csch(Pi/sqrt(5)))/2. (End)
a(n) = A005891(n-1) + 5*A000217(n). - Mario Cortés, Oct 26 2020
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(5))*sinh(sqrt(2/5)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(5))*csch(Pi/sqrt(5)).(End)
E.g.f.: exp(x)*(1 + 5*x + 5*x^2). - Stefano Spezia, Feb 05 2021

A271624 a(n) = 2*n^2 - 4*n + 4.

Original entry on oeis.org

2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 4 is a perfect square.
For n > 2, the number of square a(n)-gonal numbers is finite. - Muniru A Asiru, Oct 16 2016

Examples

			a(1) = 2*1^2 - 4*1 + 4 = 2.
		

Crossrefs

Cf. A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9), A255843 (k = -8), A271649 (k = -7), A093328 (k = -6), A097080 (k = -5), this sequence (k = -4), A051890 (k = -3), A058331 (k = -2), A001844 (k = -1), A001105 (k = 0), A046092 (k = 1), A056222 (k = 2), A142463 (k = 3), A054000 (k = 4), A090288 (k = 5), A268581 (k = 6), A059993 (k = 7), (-1)*A147973 (k = 8), A139570 (k = 9), A271625 (k = 10), A222182 (k = 11), A152811 (k = 12), A181510 (k = 13), A161532 (k = 14), no sequence (k = 15).

Programs

  • Magma
    [ 2*n^2 - 4*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-4)];
    
  • Mathematica
    Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
  • PARI
    x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • PARI
    a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016

Formula

a(n) = 2*A002522(n-1).
G.f.: 2*x*(1 - x + 2*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = (1 + Pi*coth(Pi))/4 = 1.038337023734290587067... . - Vaclav Kotesovec, Apr 11 2016
a(n) = A005893(n-1), n > 1. - R. J. Mathar, Apr 12 2016
a(n) = 2 + 2*(n-1)^2. - Tyler Skywalker, Jul 21 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 - x + 2) - 2).
a(n) = 2*A160457(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A037235 a(n) = n*(2*n^2 - 3*n + 4)/3.

Original entry on oeis.org

0, 1, 4, 13, 32, 65, 116, 189, 288, 417, 580, 781, 1024, 1313, 1652, 2045, 2496, 3009, 3588, 4237, 4960, 5761, 6644, 7613, 8672, 9825, 11076, 12429, 13888, 15457, 17140, 18941, 20864, 22913, 25092, 27405, 29856, 32449, 35188, 38077, 41120, 44321, 47684, 51213
Offset: 0

Views

Author

Keywords

Comments

Row sums of triangle A134249. Also, binomial transform of (1, 3, 6, 4, 0, 0, 0, ...). - Gary W. Adamson, Oct 15 2007
Binomial transform of a(n) starts: 0, 1, 6, 28, 112, 400, 1312, 4032, ... . - Wesley Ivan Hurt, Oct 21 2014
Number of equivalence classes of n-tuples from the set {1,0,-1} where at the number of nonzero elements is 1,2, or 3 and two n-tuples are equivalent if they are negatives of each other. - Michael Somos, Oct 19 2022

Crossrefs

Programs

Formula

G.f.: x*(1+3*x^2)/(1-x)^4.
a(n) = Sum_{k=0..n-1} (2*k^2 + 1). - Mike Warburton, Sep 08 2007
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with n>3, a(0)=0, a(1)=1, a(2)=4, a(3)=13. - Yosu Yurramendi, Sep 03 2013
a(n+1) = a(n) + A058331(n). - Michael Somos, Oct 19 2022

A037237 Expansion of (3 + x^2) / (1 - x)^4.

Original entry on oeis.org

3, 12, 31, 64, 115, 188, 287, 416, 579, 780, 1023, 1312, 1651, 2044, 2495, 3008, 3587, 4236, 4959, 5760, 6643, 7612, 8671, 9824, 11075, 12428, 13887, 15456, 17139, 18940, 20863, 22912, 25091, 27404
Offset: 0

Views

Author

Keywords

Comments

This sequence is the partial sums of A058331. - J. M. Bergot, May 31 2012

Programs

  • Magma
    I:=[3, 12, 31, 64]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)- Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 21 2012
    
  • Mathematica
    CoefficientList[Series[(3+x^2)/(1-x)^4,{x,0,50}],x]  (* Harvey P. Dale, Mar 06 2011 *)
    LinearRecurrence[{4,-6,4,-1},{3,12,31,64},40] (* Vincenzo Librandi Jun 21 2012 *)
  • PARI
    x='x+O('x^50); Vec((3+x^2)/(1-x)^4) \\ G. C. Greubel, Jul 22 2017

Formula

a(n) = Sum_{k=0..n} (2*(k+1)^2 + 1). - Mike Warburton, Jul 07 2007, Sep 07 2007
a(n) = (n+1)*(2*n^2 + 7*n + 9)/3. - R. J. Mathar, Mar 29 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 21 2012
E.g.f.: (1/3)*(9 + 27*x + 15*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Jul 22 2017
Previous Showing 51-60 of 95 results. Next