A178634
a(n) = 63*((10^n - 1)/9)^2.
Original entry on oeis.org
63, 7623, 776223, 77762223, 7777622223, 777776222223, 77777762222223, 7777777622222223, 777777776222222223, 77777777762222222223, 7777777777622222222223, 777777777776222222222223, 77777777777762222222222223, 7777777777777622222222222223, 777777777777776222222222222223
Offset: 1
n=1: ..................... 63 = 9 * 7;
n=2: ................... 7623 = 99 * 77;
n=3: ................. 776223 = 999 * 777;
n=4: ............... 77762223 = 9999 * 7777;
n=5: ............. 7777622223 = 99999 * 77777;
n=6: ........... 777776222223 = 999999 * 777777;
n=7: ......... 77777762222223 = 9999999 * 7777777;
n=8: ....... 7777777622222223 = 99999999 * 77777777;
n=9: ..... 777777776222222223 = 999999999 * 777777777.
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 33 at p. 62.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
-
List([1..20], n -> 63*((10^n - 1)/9)^2); # G. C. Greubel, Jan 28 2019
-
[63*((10^n - 1)/9)^2: n in [1..20]]; // Vincenzo Librandi, Dec 28 2010
-
63((10^Range[15]-1)/9)^2 (* or *) Table[FromDigits[Join[PadRight[{},n,7],{6},PadRight[{},n,2],{3}]],{n,0,15}] (* Harvey P. Dale, Apr 23 2012 *)
-
a(n)=63*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
-
[63*((10^n - 1)/9)^2 for n in (1..20)] # G. C. Greubel, Jan 28 2019
A178635
a(n) = 72*((10^n - 1)/9)^2.
Original entry on oeis.org
72, 8712, 887112, 88871112, 8888711112, 888887111112, 88888871111112, 8888888711111112, 888888887111111112, 88888888871111111112, 8888888888711111111112, 888888888887111111111112, 88888888888871111111111112, 8888888888888711111111111112, 888888888888887111111111111112
Offset: 1
n=1: ..................... 72 = 9 * 8;
n=2: ................... 8712 = 99 * 88;
n=3: ................. 887112 = 999 * 888;
n=4: ............... 88871112 = 9999 * 8888;
n=5: ............. 8888711112 = 99999 * 88888;
n=6: ........... 888887111112 = 999999 * 888888;
n=7: ......... 88888871111112 = 9999999 * 8888888;
n=8: ....... 8888888711111112 = 99999999 * 88888888;
n=9: ..... 888888887111111112 = 999999999 * 888888888.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
A238237
Numbers which when chopped into two parts with equal length, added and squared result in the same number.
Original entry on oeis.org
81, 2025, 3025, 9801, 494209, 998001, 24502500, 25502500, 52881984, 60481729, 99980001, 6049417284, 6832014336, 9048004641, 9999800001, 101558217124, 108878221089, 123448227904, 127194229449, 152344237969, 213018248521, 217930248900, 249500250000, 250500250000
Offset: 1
2025 = (20 + 25)^2, so 2025 is in the sequence.
3025 = (30 + 25)^2, so 3025 is in the sequence.
9801 = (98 + 01)^2, so 9801 is in the sequence.
-
Select[Range[600000]^2, EvenQ[len=IntegerLength[#]] && # == (Mod[#,10^(len/2)] + Floor[#/10^(len/2)])^2 &] (* Stefano Spezia, Jan 01 2025 *)
-
forstep(m=1, 7, 2, p=10^((m+1)/2); for(n=10^m, 10^(m+1)-1, d=lift(Mod(n, p)); if(((n-d)/p+d)^2==n, print1(n, ", "))));
A272066
a(n) = (10^n-1)^3.
Original entry on oeis.org
0, 729, 970299, 997002999, 999700029999, 999970000299999, 999997000002999999, 999999700000029999999, 999999970000000299999999, 999999997000000002999999999, 999999999700000000029999999999, 999999999970000000000299999999999, 999999999997000000000002999999999999
Offset: 0
From _Seiichi Manyama_, Sep 18 2018: (Start)
n| a(n) can be divided into 3 parts for n > 1.
-+--------------------------------------------
1| 72 9
2| 9 702 99
3| 99 7002 999
4| 999 70002 9999
(End)
A272067
a(n) = (10^n-1)^4.
Original entry on oeis.org
0, 6561, 96059601, 996005996001, 9996000599960001, 99996000059999600001, 999996000005999996000001, 9999996000000599999960000001, 99999996000000059999999600000001, 999999996000000005999999996000000001, 9999999996000000000599999999960000000001, 99999999996000000000059999999999600000000001
Offset: 0
From _Seiichi Manyama_, Sep 18 2018: (Start)
n| a(n) can be divided into 4 parts for n > 1.
-+--------------------------------------------
1| 65 61
2| 9 605 9 601
3| 99 6005 99 6001
4| 999 60005 999 60001
(End)
A272068
a(n) = (10^n-1)^5.
Original entry on oeis.org
0, 59049, 9509900499, 995009990004999, 99950009999000049999, 9999500009999900000499999, 999995000009999990000004999999, 99999950000009999999000000049999999, 9999999500000009999999900000000499999999, 999999995000000009999999990000000004999999999, 99999999950000000009999999999000000000049999999999
Offset: 0
From _Seiichi Manyama_, Sep 18 2018: (Start)
n| a(n) can be divided into 5 parts for n > 1.
-+--------------------------------------------
1| 5 9 04 9
2| 9 50 99 004 99
3| 99 500 999 0004 999
4| 999 5000 9999 00004 9999
(End)
A319358
a(n) = (10^n - 1)^9.
Original entry on oeis.org
0, 387420489, 913517247483640899, 991035916125874083964008999, 999100359916012598740083996400089999, 999910003599916001259987400083999640000899999, 999991000035999916000125999874000083999964000008999999
Offset: 0
n| a(n) can be divided into 9 parts for n > 3.
-+------------------------------------------------------
3| 99 1035 9 16125 874083 9 64008 999
4| 999 10035 99 160125 9 8740083 99 640008 9999
5| 9999 100035 999 1600125 99 87400083 999 6400008 99999
- Seiichi Manyama, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (1111111111, -112233445443322110, 1123457901110987543211000, -1123570145779775409653211000000, 112358025801220975197532110000000000, -1123570145779775409653211000000000000000, 1123457901110987543211000000000000000000000, -112233445443322110000000000000000000000000000, 1111111111000000000000000000000000000000000000, -1000000000000000000000000000000000000000000000).
A271528
a(n) = 2*(10^n - 1)^2/27.
Original entry on oeis.org
0, 6, 726, 73926, 7405926, 740725926, 74073925926, 7407405925926, 740740725925926, 74074073925925926, 7407407405925925926, 740740740725925925926, 74074074073925925925926, 7407407407405925925925926, 740740740740725925925925926, 74074074074073925925925925926
Offset: 0
n=1: 6 = 2 * 3;
n=2: 726 = 22 * 33;
n=3: 73926 = 222 * 333;
n=4: 7405926 = 2222 * 3333;
n=5: 740725926 = 22222 * 33333;
n=6: 74073925926 = 222222 * 333333;
n=7: 7407405925926 = 2222222 * 3333333;
n=8: 740740725925926 = 22222222 * 33333333;
n=9: 74074073925925926 = 222222222 * 333333333, etc.
Cf. similar sequences of the form k*((10^n - 1)/9)^2:
A075411 (k=4), this sequence (k=6),
A075412 (k=9),
A075413 (k=16),
A178630 (k=18),
A075414 (k=25),
A178631 (k=27),
A075415 (k=36),
A178632 (k=45),
A075416 (k=49),
A178633 (k=54),
A178634 (k=63),
A075417 (k=64),
A178635 (k=72),
A059988 (k=81).
-
Table[2 ((10^n - 1)^2/27), {n, 0, 15}]
LinearRecurrence[{111, -1110, 1000}, {0, 6, 726}, 16]
-
x='x+O('x^99); concat(0, Vec(6*x*(1+10*x)/(1-111*x+1110*x^2-1000*x^3))) \\ Altug Alkan, Apr 09 2016
-
for n in range(0,10**1):print((int)((2*(10**n-1)**2)/27))
# Soumil Mandal, Apr 10 2016
A350918
Numbers k = x.y which when split into two parts x and y of equal length, added and squared result in the same number k, '.' means concatenation, and the second part y starts with 0.
Original entry on oeis.org
9801, 998001, 99980001, 9048004641, 9999800001, 923594037444, 989444005264, 999998000001, 7901234409876544, 8434234407495744, 8934133805179209, 9999999800000001, 999999998000000001, 79012345680987654321, 82644628100826446281, 83407877440792003584, 87138706300620940900
Offset: 1
(998+001)^2 = 999^2 = 998001, as x = 998 and y = 001 starts with 0, 998001 is a term.
(30+25)^2 = 55^2 = 3025, here x = 30 but y = 25 does not start with 0, hence 3025 is not a term.
A059988 \ {0, 81} is a subsequence.
Comments