cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A289020 Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks.

Original entry on oeis.org

1, 1, 2, 10, 92, 1348, 28808, 845800, 32664944, 1605553552, 97868465696, 7245440815264, 640359291096512, 66598657958731840, 8051483595083729024, 1119653568781387712128, 177465810459239319017216, 31804047327185301634148608, 6398867435594240638421950976
Offset: 0

Views

Author

Alois P. Heinz, Jun 22 2017

Keywords

Comments

The semilengths of Dyck paths counted by a(n) are elements of the integer interval [2*n-1, n*(n+1)/2] = [A060747(n), A000217(n)] for n>0.

Examples

			. a(2) = 2:      /\    /\
.             /\/  \  /  \/\  .
		

Crossrefs

Column k=1 of A288972.

Programs

  • Maple
    b:= proc(n, j, v) option remember; `if`(n=j,
          `if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, i, v-1)*
           i*binomial(j-1, i-2), i=1..min(j+1, n-j))))
        end:
    a:= n-> `if`(n=0, 1, add(b(w, 1, n), w=2*n-1..n*(n+1)/2)):
    seq(a(n), n=0..18);
  • Mathematica
    b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1]*i*Binomial[j - 1, i - 2], {i, Min[j + 1, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 1, n], {w, 2*n - 1, n*(n + 1)/2}]]; Table[a[n], {n, 0, 18}] (* Indranil Ghosh, Jul 06 2017, after Maple code *)

A340804 Triangle read by rows: T(n, k) = 1 + k*(n - 1) + (2*k - n - 1)*(k mod 2) with 0 < k <= n.

Original entry on oeis.org

1, 1, 3, 1, 5, 9, 1, 7, 11, 13, 1, 9, 13, 17, 25, 1, 11, 15, 21, 29, 31, 1, 13, 17, 25, 33, 37, 49, 1, 15, 19, 29, 37, 43, 55, 57, 1, 17, 21, 33, 41, 49, 61, 65, 81, 1, 19, 23, 37, 45, 55, 67, 73, 89, 91, 1, 21, 25, 41, 49, 61, 73, 81, 97, 101, 121, 1, 23, 27, 45, 53, 67, 79, 89, 105, 111, 131, 133
Offset: 1

Views

Author

Stefano Spezia, Jan 22 2021

Keywords

Comments

T(n, k) is the k-th diagonal element of an n X n square matrix M(n) formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern.
It includes exclusively all the odd numbers (A005408). Except the term 1, all the other odd numbers appear a finite number of times.

Examples

			1
1,  3
1,  5,  9,
1,  7, 11, 13
1,  9, 13, 17, 25
1, 11, 15, 21, 29, 31
1, 13, 17, 25, 33, 37, 49
...
		

Crossrefs

Cf. A005408, A317614 (row sums).
Cf. A000012 (1st column), A006010 (sum of the first n rows), A060747 (2nd column), A074147 (antidiagonals of M matrices), A241016 (row sums of M matrices), A317617 (column sums of M matrices), A322277 (permanent of M matrices), A323723 (subdiagonal sum of M matrices), A323724 (superdiagonal sum of M matrices).

Programs

  • Mathematica
    Table[1+k(n-1)+(2k-n-1)Mod[k,2],{n,12},{k,n}]//Flatten
  • PARI
    T(n, k) = 1 + k*(n - 1) + (2*k - n - 1)*(k % 2); \\ Michel Marcus, Jan 25 2021

Formula

O.g.f.: (1 + y - 3*y^2 + y^3 + x*(-1 - y + 5*y^2 + y^3))/((-1 + x)^2*(-1 + y)^2*(1+y)^2).
E.g.f.: exp(x - y)*(1 + x + 2*y + exp(2*y)*(1 + x*(-1 + 2*y)))/2.

A033569 a(n) = (2*n - 1)*(3*n + 1).

Original entry on oeis.org

-1, 4, 21, 50, 91, 144, 209, 286, 375, 476, 589, 714, 851, 1000, 1161, 1334, 1519, 1716, 1925, 2146, 2379, 2624, 2881, 3150, 3431, 3724, 4029, 4346, 4675, 5016, 5369, 5734, 6111, 6500, 6901, 7314, 7739, 8176, 8625, 9086, 9559, 10044, 10541, 11050, 11571
Offset: 0

Views

Author

Keywords

Comments

For n>0, a(n) is the sum of the numbers from 2n+2 to 4n. The last digit of a(n) corresponds to the last digit of the squares mod 10 (A008959). Binomial Transform of a(n) starts: -1, 3, 28, 124, 432, 1328, 3776, 10176, 26368, ... . - Wesley Ivan Hurt, Dec 06 2014

Crossrefs

Cf. A008959, A060747, A016777, A259758 (subsequence).

Programs

Formula

G.f.: (-1+7*x+6*x^2)/(1-x)^3. - Vincenzo Librandi, Jul 07 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 07 2012
E.g.f.: (-1+5*x+6*x^2)*e^x. - Robert Israel, Dec 07 2014
a(n) = A060747(n) * A016777(n). - Reinhard Zumkeller, Jul 05 2015
Sum_{n>=0} 1/a(n) = 2/5*(log(2)-1) -sqrt(3)*Pi/30 -3*log(3)/10 = -0.6337047... - R. J. Mathar, Apr 22 2024

A084643 a(n) = 3^(n-1)*(2*n-3) + 2^(n+1).

Original entry on oeis.org

1, 3, 11, 43, 167, 631, 2315, 8275, 28943, 99439, 336659, 1126027, 3728279, 12239527, 39890843, 129205699, 416249375, 1334710495, 4262149667, 13560765691, 43005771431, 135988785943, 428882869931, 1349402340403
Offset: 0

Views

Author

Paul Barry, Jun 09 2003

Keywords

Comments

Binomial transform of A048495. Second binomial transform of 1, 1, 3, 5, 7, ...

Crossrefs

Programs

  • Magma
    [3^(n-1)*(2*n-3)+2^(n+1) : n in [0..30]]; // Vincenzo Librandi, Sep 25 2011
    
  • Mathematica
    LinearRecurrence[{8,-21,18},{1,3,11},30] (* Harvey P. Dale, Dec 12 2015 *)
  • PARI
    Vec((1-5*x+8*x^2)/(1-2*x)/(1-3*x)^2+O(x^99)) \\ Charles R Greathouse IV, Mar 22 2012
    
  • SageMath
    [2^(n+1) +3^(n-1)*(2*n-3) for n in range(41)] # G. C. Greubel, Mar 22 2023

Formula

G.f.: (1 - 5*x + 8*x^2)/((1-2*x)*(1-3*x)^2). - Colin Barker, Mar 22 2012
E.g.f.: 2*exp(2*x) + (2*x-1)*exp(3*x). - G. C. Greubel, Mar 22 2023

A132774 A natural number operator.

Original entry on oeis.org

1, 2, 3, 0, 4, 5, 0, 0, 6, 7, 0, 0, 0, 8, 9, 0, 0, 0, 0, 10, 11, 0, 0, 0, 0, 0, 12, 13, 0, 0, 0, 0, 0, 0, 14, 15, 0, 0, 0, 0, 0, 0, 0, 16, 17, 0, 0, 0, 0, 0, 0, 0, 0, 18, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 23
Offset: 1

Views

Author

Gary W. Adamson, Aug 28 2007

Keywords

Comments

Row sums = A016813: (1, 5, 9, 13, ...).
A132774 * [1, 2, 3, ...] = A033951.

Examples

			First few rows of the triangle are:
  1;
  2,  3;
  0,  4,  5;
  0,  0,  6,  7;
  0,  0,  0,  8,  9;
  0,  0,  0,  0, 10, 11;
  ...
		

Crossrefs

Cf. A016813 (row sums), A033951, A060747 (main diagonal).

Programs

  • Mathematica
    T[n_,k_]:=If[n==k,2n-1,If[n-k==1,2(n-1),0]]; Flatten[Table[T[n,k],{n,12},{k,n}]] (* Stefano Spezia, Dec 21 2021 *)
    Join[{1},Flatten[{#,PadRight[{},#[[1]]/2,0]}&/@Partition[Range[2,30],2]]] (* Harvey P. Dale, Mar 24 2024 *)
    Join[{1},Flatten[Table[Join[Range[2n,2n+1],PadRight[{},n,0]],{n,20}]]] (* Harvey P. Dale, Mar 25 2024 *)

Formula

As an infinite lower triangular matrix, (1, 3, 5, ...) in the main diagonal and (2, 4, 6, ...) in the subdiagonal; with the rest zeros.
From Stefano Spezia, Dec 21 2021: (Start)
T(n, k) = 2*n - 1 if n = k, T(n, k) = 2*(n - 1) if n - k = 1, otherwise T(n, k) = 0.
G.f.: x*y*(1 + x*(2 + y))/(1 - x*y)^2. (End)

Extensions

More terms from Stefano Spezia, Dec 21 2021

A242412 a(n) = (2*n-1)^2 + 14.

Original entry on oeis.org

15, 23, 39, 63, 95, 135, 183, 239, 303, 375, 455, 543, 639, 743, 855, 975, 1103, 1239, 1383, 1535, 1695, 1863, 2039, 2223, 2415, 2615, 2823, 3039, 3263, 3495, 3735, 3983, 4239, 4503, 4775, 5055, 5343, 5639, 5943, 6255, 6575, 6903, 7239, 7583, 7935, 8295, 8663, 9039, 9423, 9815
Offset: 1

Views

Author

Aaron David Fairbanks, May 13 2014

Keywords

Comments

The previous definition was "a(n) = normalized inverse radius of the inscribed circle that is tangent to the left circle of the symmetric arbelos and the n-th and (n-1)-st circles in the Pappus chain".
See links section for image of these circles, via Wolfram MathWorld (there an asymmetric arbelos is shown).
The Rothman-Fukagawa article has another picture of the circles, based on a Japanese 1788 sangaku problem. - N. J. A. Sloane, Jan 02 2020

Examples

			For n = 1, the radius of the outermost circle divided by the radius of a circle drawn tangent to all three of the initial inner circle, the opposite inner circle (the 0th circle in the chain), and the 1st circle in the chain is 15.
For n = 2, the radius of the outermost circle divided by the radius of a circle drawn tangent to all three of the initial inner circle, the 1st circle in the chain, and the 2nd circle in the chain is 23.
		

Crossrefs

Programs

Formula

a(n) = 4*n^2 - 4*n + 15.
From Colin Barker, May 14 2014: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -x*(15*x^2 - 22*x + 15)/(x-1)^3. (End)
From Descartes three circle theorem:
a(n) = 2 + c(n) + c(n-1) + 2*sqrt(2*(c(n) + c(n-1)) + c(n)*c(n-1)), with c(n) = A059100(n) = n^2 + 2, n >= 1, which produces 4*n^2 - 4*n + 15. - Wolfdieter Lang, Jul 01 2015
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(4*x^2 + 15) - 15.
a(n) = A060747(n)^2 + 14. (End)

Extensions

More terms from Wesley Ivan Hurt, May 13 2014
More terms and links from Robert G. Wilson v, May 13 2014
Edited: Name reformulated (with consent of the author). - Wolfdieter Lang, Jul 01 2015
Edited by N. J. A. Sloane, Jan 02 2020, simplifying the definition and adding a reference to the fact that this sequence arose in a sangaku problem from 1788 in a temple in Tokyo Prefecture.

A033589 a(n) = (2*n-1)*(3*n-1)*(4*n-1).

Original entry on oeis.org

-1, 6, 105, 440, 1155, 2394, 4301, 7020, 10695, 15470, 21489, 28896, 37835, 48450, 60885, 75284, 91791, 110550, 131705, 155400, 181779, 210986, 243165, 278460, 317015, 358974, 404481, 453680, 506715
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2*n-1)*(3*n-1)*(4*n-1): n in [0..30]]; // G. C. Greubel, Mar 05 2020
    
  • Maple
    seq( mul(j*n-1, j=2..4), n=0..30); # G. C. Greubel, Mar 05 2020
  • Mathematica
    Table[Times@@(n*Range[2,4]-1),{n,0,30}] (* or *) LinearRecurrence[{4,-6,4,-1},{-1,6,105,440},30] (* Harvey P. Dale, Sep 22 2014 *)
  • PARI
    vector(31, n, my(m=n-1); prod(j=2,4, j*m-1) ) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    [product(j*n-1 for j in (2..4)) for n in (0..30)] # G. C. Greubel, Mar 05 2020

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Sep 22 2014
G.f.: (-1 +10*x +75*x^2 +60*x^3)/(1-x)^4. - R. J. Mathar, Feb 06 2017
From G. C. Greubel, Mar 05 2020: (Start)
a(n) = n^3 * Pochhammer(2 - 1/n, 3) = Product_{j=2..4} (j*n-1).
E.g.f.: (-1 + 7*x + 46*x^2 + 24*x^3)*exp(x). (End)
Sum_{n>=1} 1/a(n) = (sqrt(3)/2-1)*Pi + 8*log(2) - 9*log(3)/2. - Amiram Eldar, Feb 22 2022

A033590 a(n) = (2*n-1)*(3*n-1)*(4*n-1)*(5*n-1).

Original entry on oeis.org

1, 24, 945, 6160, 21945, 57456, 124729, 238680, 417105, 680680, 1052961, 1560384, 2232265, 3100800, 4201065, 5571016, 7251489, 9286200, 11721745, 14607600, 17996121, 21942544, 26504985, 31744440
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2*n-1)*(3*n-1)*(4*n-1)*(5*n-1): n in [0..40]]; // G. C. Greubel, Mar 05 2020
    
  • Maple
    seq( mul(j*n-1, j=2..5), n=0..40); # G. C. Greubel, Mar 05 2020
  • Mathematica
    Table[(2*n-1)*(3*n-1)*(4*n-1)*(5*n-1), {n,0,40}] (* G. C. Greubel, Mar 05 2020 *)
  • PARI
    vector(41, n, my(m=n-1); prod(j=2,5, j*m-1) ) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    [product(j*n-1 for j in (2..5)) for n in (0..40)] # G. C. Greubel, Mar 05 2020

Formula

G.f.: (1 + 19*x + 835*x^2 + 1665*x^3 + 360*x^4)/(1-x)^5. - R. J. Mathar, Feb 06 2017
From G. C. Greubel, Mar 05 2020: (Start)
a(n) = n^4 * Pochhammer(2 - 1/n, 4) = Product_{j=2..5} (j*n-1).
E.g.f.: (1 + 23*x + 449*x^2 + 566*x^3 + 120*x^4)*exp(x). (End)

A214955 Number of solid standard Young tableaux of shape [[n,n-1],[1]].

Original entry on oeis.org

1, 6, 25, 98, 378, 1452, 5577, 21450, 82654, 319124, 1234506, 4784276, 18572500, 72209880, 281150505, 1096087770, 4278278070, 16717354500, 65388738030, 256000696380, 1003116947820, 3933750236520, 15437682614250, 60625494924228, 238235373671148, 936735006679752
Offset: 1

Views

Author

Alois P. Heinz, Jul 30 2012

Keywords

Comments

a(n) is odd if and only if n = 2^i-1 for i in {1, 2, 3, ...} = A000027.
Form an array with m(1,n) = n*(n+1)/2, m(n,1) = n*(n-1)+1, and m(i,j) = m(i,j-1) + m(i-1,j); A000217 in the top row, A002061 in the first column, A086514 in the second column. Then on the diagonal m(n,n) = a(n). - J. M. Bergot, May 02 2013

Crossrefs

Column k=1 of A214775.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<2, n, 2*(2*n-1)^2*a(n-1)/((n+1)*(2*n-3)))
        end:
    seq(a(n), n=1..30);
  • Mathematica
    a[n_]:= a[n] = If[n<2, n, 2*(2*n-1)^2*a[n-1]/((n+1)*(2*n-3))]; Array[a, 30] (* Jean-François Alcover, Aug 14 2017, translated from Maple *)
  • PARI
    a(n) = (2*n-1) * binomial(2*n,n)/(n+1); \\ Michel Marcus, Mar 06 2022

Formula

a(n) = 2*(2*n-1)^2/((n+1)*(2*n-3)) * a(n-1) for n>1; a(1) = 1.
a(n) = (2*n-1) * C(2*n,n)/(n+1) = A060747(n) * A000108(n).
a(n) = [x^n] x*(1 + 2*x)/(1 - x)^(n+2). - Ilya Gutkovskiy, Oct 12 2017
Sum_{n>=1} 1/a(n) = 1/6 + G + 13*Pi/(36*sqrt(3)) - Pi*log(2+sqrt(3))/8, where G is Catalan's constant (A006752). - Amiram Eldar, Mar 06 2022
From Stefano Spezia, Mar 29 2023: (Start)
O.g.f.: 1 + (3 - 3*sqrt(1 - 4*x) - 8*x)/(2*x*sqrt(1 - 4*x)).
E.g.f.: 1 + exp(2*x)*(3*I_1(2*x) - I_0(2*x)), where I_n(x) is the modified Bessel function of the first kind.
a(n) ~ 2^(1+2*n)/sqrt(n*Pi). (End)

A343558 Irregular triangle read by rows: the n-th row gives the row indices of the consecutive elements of the spiral of the n X n matrix defined in A126224.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 3, 2, 2, 2, 3, 3, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 5, 5, 5, 4, 3, 2, 2, 2, 2, 3, 4, 4, 4, 3, 3, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 2, 2, 2, 2, 3, 4, 5, 5, 5, 5, 4, 3, 3, 3, 4, 4
Offset: 1

Views

Author

Stefano Spezia, Apr 19 2021

Keywords

Examples

			The triangle begins
1
1   1   2   2
1   1   1   2   3   3   3   2   2
1   1   1   1   2   3   4   4   4   4   3   2   2   2   3   3
...
		

Crossrefs

Cf. A000290 (row length), A002265, A002411 (row sums), A010873, A060747, A126224, A343559 (column indices).

Programs

  • Mathematica
    a:={};nmax:=6;For[n=1,n<=nmax,n++,For[s=1,s<=2n-1,s++,If[OddQ[s] &&Mod[s,4]==1,k=Ceiling[s/4];For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k]],If[EvenQ[s]&&Mod[s,4]==2,For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k+i]];k+=Ceiling[n-s/2],If[EvenQ[s]&&Mod[s,4]==0,For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k-i]];k=k-i+1,For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k]]]]]]];a
Previous Showing 11-20 of 35 results. Next