A063494
a(n) = (2*n - 1)*(7*n^2 - 7*n + 3)/3.
Original entry on oeis.org
1, 17, 75, 203, 429, 781, 1287, 1975, 2873, 4009, 5411, 7107, 9125, 11493, 14239, 17391, 20977, 25025, 29563, 34619, 40221, 46397, 53175, 60583, 68649, 77401, 86867, 97075, 108053, 119829, 132431, 145887, 160225, 175473, 191659, 208811, 226957, 246125, 266343, 287639
Offset: 1
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
-
[(2*n - 1)*(7*n^2 - 7*n + 3)/3: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
Table[(2*n - 1)*(7*n^2 - 7*n + 3)/3, {n,1,30}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,17,75,203}, 30] (* G. C. Greubel, Dec 01 2017 *)
-
a(n) = { (2*n - 1)*(7*n^2 - 7*n + 3)/3 } \\ Harry J. Smith, Aug 23 2009
-
my(x='x+O('x^30)); Vec(serlaplace((-3+6*x+21*x^2+14*x^3)*exp(x)/3 + 1)) \\ G. C. Greubel, Dec 01 2017
A063491
a(n) = (2*n - 1)*(3*n^2 - 3*n + 2)/2.
Original entry on oeis.org
1, 12, 50, 133, 279, 506, 832, 1275, 1853, 2584, 3486, 4577, 5875, 7398, 9164, 11191, 13497, 16100, 19018, 22269, 25871, 29842, 34200, 38963, 44149, 49776, 55862, 62425, 69483, 77054, 85156, 93807, 103025, 112828, 123234, 134261, 145927, 158250, 171248, 184939
Offset: 1
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
-
[(2*n-1)*(3*n^2 -3*n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
LinearRecurrence[{4,-6,4,-1},{1,12,50,133},40] (* Harvey P. Dale, Jun 05 2016 *)
Table[(2*n-1)*(3*n^2 -3*n +2)/2, {n,1,30}] (* G. C. Greubel, Dec 01 2017 *)
-
a(n) = { (2*n - 1)*(3*n^2 - 3*n + 2)/2 } \\ Harry J. Smith, Aug 23 2009
-
my(x='x+O('x^30)); Vec(serlaplace((-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
-
a <- c(0, 1, 9, 38, 110)
for(n in (length(a)+1):40)
a[n] <- +4*a[n-1]-6*a[n-2]+4*a[n-3]-a[n-4]
a [Yosu Yurramendi, Sep 04 2013]
A063492
a(n) = (2*n - 1)*(11*n^2 - 11*n + 6)/6.
Original entry on oeis.org
1, 14, 60, 161, 339, 616, 1014, 1555, 2261, 3154, 4256, 5589, 7175, 9036, 11194, 13671, 16489, 19670, 23236, 27209, 31611, 36464, 41790, 47611, 53949, 60826, 68264, 76285, 84911, 94164, 104066, 114639, 125905, 137886, 150604, 164081, 178339, 193400, 209286, 226019
Offset: 1
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
-
[(2*n-1)*(11*n^2-11*n+6)/6: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015
-
A063492:=n->(2*n - 1)*(11*n^2 - 11*n + 6)/6: seq(A063492(n), n=1..50); # Wesley Ivan Hurt, Dec 16 2015
-
Table[(2*n-1)*(11*n^2-11*n+6)/6, {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Sep 18 2008 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 14, 60, 161}, 40] (* Vincenzo Librandi, Dec 16 2015 *)
-
a(n) = { (2*n - 1)*(11*n^2 - 11*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
-
Vec(x*(1+x)*(1+9*x+x^2)/(1-x)^4 + O(x^100)) \\ Altug Alkan, Dec 16 2015
-
A063492_list, m = [], [22, -11, 2, 1]
for _ in range(10**2):
A063492_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
A063493
a(n) = (2*n-1)*(13*n^2-13*n+6)/6.
Original entry on oeis.org
1, 16, 70, 189, 399, 726, 1196, 1835, 2669, 3724, 5026, 6601, 8475, 10674, 13224, 16151, 19481, 23240, 27454, 32149, 37351, 43086, 49380, 56259, 63749, 71876, 80666, 90145, 100339, 111274, 122976, 135471, 148785, 162944, 177974, 193901, 210751, 228550, 247324, 267099
Offset: 1
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
-
[(2*n-1)*(13*n^2-13*n+6)/6: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015
-
Table[(2 n - 1) (13 n^2 - 13 n + 6)/6, {n, 1, 40}] (* Bruno Berselli, Dec 16 2015 *)
LinearRecurrence[{4,-6,4,-1}, {1,16,70,189}, 30] (* G. C. Greubel, Dec 01 2017 *)
-
a(n) = { (2*n - 1)*(13*n^2 - 13*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
-
my(x='x+O('x^30)); Vec(serlaplace((-6+12*x+39*x^2+26*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
-
A063493_list, m = [], [26, -13, 2, 1]
for _ in range(10**2):
A063493_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
A063495
a(n) = (2*n-1)*(5*n^2-5*n+2)/2.
Original entry on oeis.org
1, 18, 80, 217, 459, 836, 1378, 2115, 3077, 4294, 5796, 7613, 9775, 12312, 15254, 18631, 22473, 26810, 31672, 37089, 43091, 49708, 56970, 64907, 73549, 82926, 93068, 104005, 115767, 128384, 141886, 156303, 171665, 188002, 205344, 223721, 243163, 263700, 285362
Offset: 1
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
-
[(2*n-1)*(5*n^2-5*n+2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
Table[(2n-1)(5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,18,80,217},40] (* Harvey P. Dale, Dec 18 2011 *)
-
a(n) = (2*n - 1)*(5*n^2 - 5*n + 2)/2 \\ Harry J. Smith, Aug 23 2009
-
my(x='x+O('x^30)); Vec(serlaplace((-2+4*x+15*x^2+10*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
A005918
Number of points on surface of square pyramid: 3*n^2 + 2 (n>0).
Original entry on oeis.org
1, 5, 14, 29, 50, 77, 110, 149, 194, 245, 302, 365, 434, 509, 590, 677, 770, 869, 974, 1085, 1202, 1325, 1454, 1589, 1730, 1877, 2030, 2189, 2354, 2525, 2702, 2885, 3074, 3269, 3470, 3677, 3890, 4109, 4334, 4565, 4802, 5045, 5294, 5549, 5810, 6077, 6350, 6629
Offset: 0
G.f. = 1 + 5*x + 14*x^2 + 29*x^3 + 50*x^4 + 77*x^5 + 110*x^6 + 149*x^7 + ...
- H. S. M. Coxeter, Polyhedral numbers, in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. F. Wells, Three-Dimensional Nets and Polyhedra, Fig. 15.1 (e).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Branko Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #26.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Reticular Chemistry Structure Resource (RCSR), The bnn tiling (or net).
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
A005918:=-(z+1)*(z**2+z+1)/(z-1)**3; # Simon Plouffe in his 1992 dissertation.
-
Join[{1}, Table[Plus@@(Range[n, n + 2]^2), {n, 0, 49}]] (* Alonso del Arte, Oct 27 2012 *)
CoefficientList[Series[(1 - x^2) (1 - x^3)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)
LinearRecurrence[{3,-3,1},{1,5,14,29},50] (* Harvey P. Dale, Dec 12 2015 *)
-
sq3nsqp2(n) = { for(x=1,n, y = 3*x*x+2; print1(y, ", ") ) }
-
{a(n) = 3*n^2 + 2 - (n==0)}; /* Michael Somos, Aug 07 2014 */
A049480
a(n) = (2*n-1)*(n^2 -n +6)/6.
Original entry on oeis.org
1, 4, 10, 21, 39, 66, 104, 155, 221, 304, 406, 529, 675, 846, 1044, 1271, 1529, 1820, 2146, 2509, 2911, 3354, 3840, 4371, 4949, 5576, 6254, 6985, 7771, 8614, 9516, 10479, 11505, 12596, 13754, 14981, 16279, 17650, 19096, 20619, 22221
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
-
[(2*n-1)*(n^2-n+6)/6: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
Table[(2n-1)(n^2-n+6)/6,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,4,10,21},50] (* Harvey P. Dale, Jan 01 2012 *)
-
a(n)=(2*n-1)*(n^2-n+6)/6 \\ Charles R Greathouse IV, Sep 24 2015
-
x='x+O('x^30); Vec(serlaplace((-6 + 12*x + 3*x^2 + 2*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
A132366
Partial sum of centered tetrahedral numbers A005894.
Original entry on oeis.org
1, 6, 21, 56, 125, 246, 441, 736, 1161, 1750, 2541, 3576, 4901, 6566, 8625, 11136, 14161, 17766, 22021, 27000, 32781, 39446, 47081, 55776, 65625, 76726, 89181, 103096, 118581, 135750, 154721, 175616, 198561, 223686, 251125, 281016, 313501, 348726, 386841
Offset: 0
Cf.
A000292,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
Cf.
A337895 (oriented),
A000389(n+4) (unoriented),
A000389 (chiral),
A331353 (5-cell edges, faces),
A337955 (8-cell vertices, 16-cell facets),
A337958 (16-cell vertices, 8-cell facets),
A338951 (24-cell),
A338967 (120-cell, 600-cell).
-
Do[Print[n, " ", (n^4 + 4 n^3 + 11 n^2 + 14 n + 6)/6 ], {n, 0, 10000}]
Accumulate[Table[(2n+1)(n^2+n+3)/3,{n,0,40}]] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,21,56,125},40] (* Harvey P. Dale, Feb 26 2020 *)
Corrected offset, Mathematica program by Tomas J. Bulka (tbulka(AT)rodincoil.com), Sep 02 2009
A117384
Positive integers, each occurring twice in the sequence, such that a(n) = a(k) when n+k = 4*a(n), starting with a(1)=1 and filling the next vacant position with the smallest unused number.
Original entry on oeis.org
1, 2, 1, 3, 4, 2, 5, 3, 6, 7, 4, 8, 5, 9, 6, 10, 11, 7, 12, 8, 13, 9, 14, 10, 15, 16, 11, 17, 12, 18, 13, 19, 14, 20, 15, 21, 22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28, 29, 22, 30, 23, 31, 24, 32, 25, 33, 26, 34, 27, 35, 28, 36, 37, 29, 38, 30, 39, 31, 40, 32, 41, 33, 42
Offset: 1
9 first appears at position: A001614(9) = 14;
9 next appears at position: 4*9 - A001614(9) = 22.
From _Paolo Xausa_, Aug 27 2021: (Start)
Written as an irregular triangle T(r,c) the sequence begins:
r\c 1 2 3 4 5 6 7 8 9 10 11 12 13
1: 1;
2: 2, 1, 3;
3: 4, 2, 5, 3, 6;
4: 7, 4, 8, 5, 9, 6, 10;
5: 11, 7, 12, 8, 13, 9, 14, 10, 15;
6: 16, 11, 17, 12, 18, 13, 19, 14, 20, 15, 21;
7: 22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28;
...
The triangle can be arranged as shown below so that, in every row, each odd position term is equal to the term immediately below it.
1
2 1 3
4 2 5 3 6
7 4 8 5 9 6 10
11 7 12 8 13 9 14 10 15
...
(End)
-
nterms=64;a=ConstantArray[0,nterms];For[n=1;t=1,n<=nterms,n++,If[a[[n]]==0,a[[n]]=t;If[(d=4t-n)<=nterms,a[[d]]=a[[n]]];t++]]; a (* Paolo Xausa, Aug 27 2021 *)
(* Second program, triangle rows *)
nrows = 8;Table[rlen=2r-1;Permute[Range[s=1+(r-1)(r-2)/2,s+rlen-1],Join[Range[2,rlen,2],Range[1,rlen,2]]],{r,nrows}] (* Paolo Xausa, Aug 27 2021 *)
-
{a(n)=local(A=vector(n),m=1); for(k=1,n,if(A[k]==0,A[k]=m;if(4*m-k<=#A,A[4*m-k]=m);m+=1));A[n]}
-
T(r,c) = my(k = r-1-((c+1) % 2)); k*(k+1)/2+ceil(c/2);
tabf(nn) = {for (r=1, nn, for(c = 1, 2*r-1, print1(T(r,c), ", ");); print;);} \\ Michel Marcus, Sep 09 2021
A193218
Number of vertices in truncated tetrahedron with faces that are centered polygons.
Original entry on oeis.org
1, 21, 95, 259, 549, 1001, 1651, 2535, 3689, 5149, 6951, 9131, 11725, 14769, 18299, 22351, 26961, 32165, 37999, 44499, 51701, 59641, 68355, 77879, 88249, 99501, 111671, 124795, 138909, 154049, 170251, 187551, 205985, 225589, 246399, 268451, 291781, 316425
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- OEIS, (Centered_polygons) pyramidal numbers
- Wikipedia, Tetrahedral number
- Wikipedia, Triangular number
- Wikipedia, Centered polygonal number
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[6*n^3-9*n^2+5*n-1: n in [1..40]]; // Vincenzo Librandi, Aug 30 2011
-
Table[6 n^3 - 9 n^2 + 5 n - 1, {n, 35}] (* Alonso del Arte, Jul 18 2011 *)
CoefficientList[Series[(1+x)*(x^2+16*x+1)/(1-x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 04 2018 *)
Comments