cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A063494 a(n) = (2*n - 1)*(7*n^2 - 7*n + 3)/3.

Original entry on oeis.org

1, 17, 75, 203, 429, 781, 1287, 1975, 2873, 4009, 5411, 7107, 9125, 11493, 14239, 17391, 20977, 25025, 29563, 34619, 40221, 46397, 53175, 60583, 68649, 77401, 86867, 97075, 108053, 119829, 132431, 145887, 160225, 175473, 191659, 208811, 226957, 246125, 266343, 287639
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Comments

Interpret A176271 as an infinite square array read by antidiagonals, with rows 1,5,11,19,...; 3,9,17,27,... and so on. The sum of the terms in the n X n upper submatrix are s(n) = 1, 18, 93, 296, ... = n^2*(7*n^2-1)/6, and a(n) = s(n) - s(n-1) are the first differences. - J. M. Bergot, Jun 27 2013

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n - 1)*(7*n^2 - 7*n + 3)/3: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    Table[(2*n - 1)*(7*n^2 - 7*n + 3)/3, {n,1,30}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,17,75,203}, 30] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(7*n^2 - 7*n + 3)/3 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-3+6*x+21*x^2+14*x^3)*exp(x)/3 + 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

G.f.: x*(1+x)*(1+12*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
E.g.f.: (-3 + 6*x + 21*x^2 + 14*x^3)*exp(x)/3 + 1. - G. C. Greubel, Dec 01 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, May 11 2023

A063491 a(n) = (2*n - 1)*(3*n^2 - 3*n + 2)/2.

Original entry on oeis.org

1, 12, 50, 133, 279, 506, 832, 1275, 1853, 2584, 3486, 4577, 5875, 7398, 9164, 11191, 13497, 16100, 19018, 22269, 25871, 29842, 34200, 38963, 44149, 49776, 55862, 62425, 69483, 77054, 85156, 93807, 103025, 112828, 123234, 134261, 145927, 158250, 171248, 184939
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Comments

A triangle has sides of lengths 6*n-3, 6*n^2-6*n+4, and 6*n^2-6*n+7; for n>2 its area is 6*sqrt(a(n)^2 - 1). - J. M. Bergot, Aug 30 2013
[The source of this is using (n,n+1), (n+1,n+2), and (n+2,n+3) as (a,b) in the creation of three Pythagorean triangles with sides b^2-a^2, 2*a*b, and a^2+b^2. Combine the three respective sides to create a new larger triangle, then find its area. It is not simply working backwards from the sequence. As well, the sequence has this as its first comment to show that the numbers are actually doing something to find a solution.]

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(3*n^2 -3*n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,12,50,133},40] (* Harvey P. Dale, Jun 05 2016 *)
    Table[(2*n-1)*(3*n^2 -3*n +2)/2, {n,1,30}] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(3*n^2 - 3*n + 2)/2 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
    
  • R
    a <- c(0, 1, 9, 38, 110)
    for(n in (length(a)+1):40)
      a[n] <- +4*a[n-1]-6*a[n-2]+4*a[n-3]-a[n-4]
    a [Yosu Yurramendi, Sep 04 2013]
    

Formula

G.f.: x*(1+x)*(1+7*x+x^2)/(1-x)^4. - Colin Barker, Apr 20 2012
a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -1*a(n-4) n > 3, a(1)=1, a(2)=12, a(3)=50, a(4)=133. - Yosu Yurramendi, Sep 04 2013
E.g.f.: (-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017
From Bruce J. Nicholson, Jun 17 2020: (Start)
a(n) = A005448(n) * A005408(n-1).
a(n) = A004188(n) + A004188(n-1). (End)

A063492 a(n) = (2*n - 1)*(11*n^2 - 11*n + 6)/6.

Original entry on oeis.org

1, 14, 60, 161, 339, 616, 1014, 1555, 2261, 3154, 4256, 5589, 7175, 9036, 11194, 13671, 16489, 19670, 23236, 27209, 31611, 36464, 41790, 47611, 53949, 60826, 68264, 76285, 84911, 94164, 104066, 114639, 125905, 137886, 150604, 164081, 178339, 193400, 209286, 226019
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

Formula

G.f.: x*(1+x)*(1 + 9*x + x^2)/(1-x)^4. - Colin Barker, Apr 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. - Wesley Ivan Hurt, Dec 16 2015
E.g.f.: (-6 + 12*x + 33*x^2 + 22*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017

A063493 a(n) = (2*n-1)*(13*n^2-13*n+6)/6.

Original entry on oeis.org

1, 16, 70, 189, 399, 726, 1196, 1835, 2669, 3724, 5026, 6601, 8475, 10674, 13224, 16151, 19481, 23240, 27454, 32149, 37351, 43086, 49380, 56259, 63749, 71876, 80666, 90145, 100339, 111274, 122976, 135471, 148785, 162944, 177974, 193901, 210751, 228550, 247324, 267099
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(13*n^2-13*n+6)/6: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015
  • Mathematica
    Table[(2 n - 1) (13 n^2 - 13 n + 6)/6, {n, 1, 40}] (* Bruno Berselli, Dec 16 2015 *)
    LinearRecurrence[{4,-6,4,-1}, {1,16,70,189}, 30] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(13*n^2 - 13*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-6+12*x+39*x^2+26*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
    
  • Python
    A063493_list, m = [], [26, -13, 2, 1]
    for _ in range(10**2):
        A063493_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
    

Formula

G.f.: x*(1+x)*(1+11*x+x^2)/(1-x)^4. - Colin Barker, Apr 20 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Dec 16 2015
E.g.f.: (-6 + 12*x + 39*x^2 + 26*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017

A063495 a(n) = (2*n-1)*(5*n^2-5*n+2)/2.

Original entry on oeis.org

1, 18, 80, 217, 459, 836, 1378, 2115, 3077, 4294, 5796, 7613, 9775, 12312, 15254, 18631, 22473, 26810, 31672, 37089, 43091, 49708, 56970, 64907, 73549, 82926, 93068, 104005, 115767, 128384, 141886, 156303, 171665, 188002, 205344, 223721, 243163, 263700, 285362
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(5*n^2-5*n+2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    Table[(2n-1)(5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,18,80,217},40] (* Harvey P. Dale, Dec 18 2011 *)
  • PARI
    a(n) = (2*n - 1)*(5*n^2 - 5*n + 2)/2 \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-2+4*x+15*x^2+10*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

From Harvey P. Dale, Dec 18 2011: (Start)
a(1)=1, a(2)=18, a(3)=80, a(4)=217, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) - a(n-4).
G.f.: (x^3+14*x^2+14*x+1)/(1-x)^4. (End)
E.g.f.: (-2 + 4*x + 15*x^2 + 10*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017

A005918 Number of points on surface of square pyramid: 3*n^2 + 2 (n>0).

Original entry on oeis.org

1, 5, 14, 29, 50, 77, 110, 149, 194, 245, 302, 365, 434, 509, 590, 677, 770, 869, 974, 1085, 1202, 1325, 1454, 1589, 1730, 1877, 2030, 2189, 2354, 2525, 2702, 2885, 3074, 3269, 3470, 3677, 3890, 4109, 4334, 4565, 4802, 5045, 5294, 5549, 5810, 6077, 6350, 6629
Offset: 0

Views

Author

Keywords

Comments

Also coordination sequence of the 5-connected (or bnn) net = hexagonal net X integers.
Also (except for initial term) numbers of the form 3n^2+2 that are not squares. All numbers 3n^2+2 are == 2 (mod 3), and hence not squares. - Cino Hilliard, Mar 01 2003, modified by Franklin T. Adams-Watters, Jun 27 2014
If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
Sums of three consecutive squares: (n - 2)^2 + (n - 1)^2 + n^2 for n > 1. - Keith Tyler, Aug 10 2010

Examples

			G.f. = 1 + 5*x + 14*x^2 + 29*x^3 + 50*x^4 + 77*x^5 + 110*x^6 + 149*x^7 + ...
		

References

  • H. S. M. Coxeter, Polyhedral numbers, in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. F. Wells, Three-Dimensional Nets and Polyhedra, Fig. 15.1 (e).

Crossrefs

Partial sums give A063488.

Programs

  • Maple
    A005918:=-(z+1)*(z**2+z+1)/(z-1)**3; # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    Join[{1}, Table[Plus@@(Range[n, n + 2]^2), {n, 0, 49}]] (* Alonso del Arte, Oct 27 2012 *)
    CoefficientList[Series[(1 - x^2) (1 - x^3)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)
    LinearRecurrence[{3,-3,1},{1,5,14,29},50] (* Harvey P. Dale, Dec 12 2015 *)
  • PARI
    sq3nsqp2(n) = { for(x=1,n, y = 3*x*x+2; print1(y, ", ") ) }
    
  • PARI
    {a(n) = 3*n^2 + 2 - (n==0)}; /* Michael Somos, Aug 07 2014 */

Formula

G.f.: (1 - x^2)*(1 - x^3)/(1 - x)^5 = (1+x)*(1+x+x^2)/(1-x)^3.
Euler transform of length 3 sequence [ 5, -1, -1]. - Michael Somos, Aug 07 2014
a(-n) = a(n) for all n in Z. - Michael Somos, Aug 07 2014
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3. - Colin Barker, Aug 07 2014
a(0) = 1; for n > 0, a(n) = A120328(n-1). - Doug Bell, Aug 18 2015
E.g.f.: (2+3*x+3*x^2)*exp(x)-1. - Robert Israel, Aug 18 2015
a(n) = A005448(n) + A005448(n+1), sum of 2 consecutive centered triangular numbers. - R. J. Mathar, Apr 28 2020
a(n) = (n - 1)^2 + n^2 + (n + 1)^2. - Charlie Marion, Aug 31 2021
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=0} 1/a(n) = coth(sqrt(2/3)*Pi)*Pi/(2*sqrt(6)) + 3/4.
Sum_{n>=0} (-1)^n/a(n) = cosech(sqrt(2/3)*Pi)*Pi/(2*sqrt(6)) + 3/4. (End)

A049480 a(n) = (2*n-1)*(n^2 -n +6)/6.

Original entry on oeis.org

1, 4, 10, 21, 39, 66, 104, 155, 221, 304, 406, 529, 675, 846, 1044, 1271, 1529, 1820, 2146, 2509, 2911, 3354, 3840, 4371, 4949, 5576, 6254, 6985, 7771, 8614, 9516, 10479, 11505, 12596, 13754, 14981, 16279, 17650, 19096, 20619, 22221
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(n^2-n+6)/6: n in [1..30]]; // G. C. Greubel, Dec 01 2017
    
  • Mathematica
    Table[(2n-1)(n^2-n+6)/6,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,4,10,21},50] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    a(n)=(2*n-1)*(n^2-n+6)/6 \\ Charles R Greathouse IV, Sep 24 2015
    
  • PARI
    x='x+O('x^30); Vec(serlaplace((-6 + 12*x + 3*x^2 + 2*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017

Formula

From Harvey P. Dale, Jan 01 2012: (Start)
G.f.: x*(x^3 + 1)/(x-1)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4); a(1)=1, a(2)=4, a(3)=10, a(4)=21. (End)
E.g.f.: (-6 + 12*x + 3*x^2 + 2*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017

A132366 Partial sum of centered tetrahedral numbers A005894.

Original entry on oeis.org

1, 6, 21, 56, 125, 246, 441, 736, 1161, 1750, 2541, 3576, 4901, 6566, 8625, 11136, 14161, 17766, 22021, 27000, 32781, 39446, 47081, 55776, 65625, 76726, 89181, 103096, 118581, 135750, 154721, 175616, 198561, 223686, 251125, 281016, 313501, 348726, 386841
Offset: 0

Views

Author

Jonathan Vos Post, Nov 09 2007

Keywords

Comments

From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) is the number of achiral colorings of the 5 tetrahedral facets (or vertices) of a regular 4-dimensional simplex using n or fewer colors. An achiral arrangement is identical to its reflection. The 4-dimensional simplex is also called a 5-cell or pentachoron. Its Schläfli symbol is {3,3,3}.
There are 60 elements in the automorphism group of the 4-dimensional simplex that are not in its rotation group. Each is an odd permutation of the vertices and can be associated with a partition of 5 based on the conjugacy class of the permutation. The first formula for a(n-1) is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Odd Cycle Indices
41 30 x_1x_4^1
32 20 x_2^1x_3^1
2111 10 x_1^3x_2^1 (End)

Crossrefs

Cf. A337895 (oriented), A000389(n+4) (unoriented), A000389 (chiral), A331353 (5-cell edges, faces), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338951 (24-cell), A338967 (120-cell, 600-cell).
a(n-1) = A325001(4,n).

Programs

  • Mathematica
    Do[Print[n, " ", (n^4 + 4 n^3 + 11 n^2 + 14 n + 6)/6 ], {n, 0, 10000}]
    Accumulate[Table[(2n+1)(n^2+n+3)/3,{n,0,40}]] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,21,56,125},40] (* Harvey P. Dale, Feb 26 2020 *)

Formula

a(n) = (n^4 + 4*n^3 + 11*n^2 + 14*n + 6)/6 = (n^2+2*n+6)*(n+1)^2/6.
G.f.: -(x+1)*(x^2+1) / (x-1)^5. - Colin Barker, May 04 2013
From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) = n^2 * (5 + n^2) / 6.
a(n-1) = binomial(n+4,5) - binomial(n,5) = A000389(n+4) - A000389(n).
a(n-1) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n-1) = 2*A000389(n+4) - A337895(n) = A337895(n) - 2*A000389(n) .
G.f. for a(n-1): x * (x+1) * (x^2+1) / (1-x)^5. (End)
From Amiram Eldar, Feb 14 2023: (Start)
Sum_{n>=0} 1/a(n) = Pi^2/5 + 3/25 - 3*Pi*coth(sqrt(5)*Pi)/(5*sqrt(5)).
Sum_{n>=0} (-1)^n/a(n) = Pi^2/10 - 3/25 + 3*Pi*cosech(sqrt(5)*Pi)/(5*sqrt(5)). (End)
a(n) = A006007(n) + A006007(n+1) = A002415(n) + A002415(n+2). - R. J. Mathar, Jun 05 2025

Extensions

Corrected offset, Mathematica program by Tomas J. Bulka (tbulka(AT)rodincoil.com), Sep 02 2009

A117384 Positive integers, each occurring twice in the sequence, such that a(n) = a(k) when n+k = 4*a(n), starting with a(1)=1 and filling the next vacant position with the smallest unused number.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 5, 3, 6, 7, 4, 8, 5, 9, 6, 10, 11, 7, 12, 8, 13, 9, 14, 10, 15, 16, 11, 17, 12, 18, 13, 19, 14, 20, 15, 21, 22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28, 29, 22, 30, 23, 31, 24, 32, 25, 33, 26, 34, 27, 35, 28, 36, 37, 29, 38, 30, 39, 31, 40, 32, 41, 33, 42
Offset: 1

Views

Author

Paul D. Hanna, Mar 11 2006

Keywords

Comments

Positions where n occurs are A001614(n) and 4*n-A001614(n), where A001614 is the Connell sequence: 1 odd, 2 even, 3 odd, ...
From Paolo Xausa, Aug 27 2021: (Start)
Terms can be arranged in an irregular triangle T(r,c) read by rows in which row r is a permutation P of the integers in the interval [s, s+rlen-1], where s = 1+(r-1)*(r-2)/2, rlen = 2*r-1 and r >= 1 (see example).
P is the alternating (first term > second term < third term > fourth term ...) permutation m -> 1, 1 -> 2, m+1 -> 3, 2 -> 4, m+2 -> 5, 3 -> 6, ..., rlen -> rlen, where m = ceiling(rlen/2).
The triangle has the following properties.
Row lengths are the positive odd numbers.
First column is A000124.
Terms in column c (where c >= 1) are of the form k*(k+1)/2+ceiling(c/2), for integers k >= floor((c-1)/2), each even column being equal to the column preceding it.
Row records (the positive terms of A000217) are in the right border.
Indices of row records are the positive terms of A000290.
Each row r contains r terms that are duplicated in the next row.
In each row, the sum of terms which are not already listed in the sequence gives the positive terms of A006003.
Row sums give A063488.
For rows r >= 2, row product is A057003(r)*A057003(r-1). (End)

Examples

			9 first appears at position: A001614(9) = 14;
9 next appears at position: 4*9 - A001614(9) = 22.
From _Paolo Xausa_, Aug 27 2021: (Start)
Written as an irregular triangle T(r,c) the sequence begins:
  r\c  1   2   3   4   5   6   7   8   9  10  11  12  13
  1:   1;
  2:   2,  1,  3;
  3:   4,  2,  5,  3,  6;
  4:   7,  4,  8,  5,  9,  6, 10;
  5:  11,  7, 12,  8, 13,  9, 14, 10, 15;
  6:  16, 11, 17, 12, 18, 13, 19, 14, 20, 15, 21;
  7:  22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28;
  ...
The triangle can be arranged as shown below so that, in every row, each odd position term is equal to the term immediately below it.
               1
            2  1  3
         4  2  5  3  6
      7  4  8  5  9  6 10
  11  7 12  8 13  9 14 10 15
             ...
(End)
		

Crossrefs

Cf. A117385 (a(5*a(n)-n)=a(n)), A117386 (a(6*a(n)-n)=a(n)).
Cf. A001614 (Connell sequence).

Programs

  • Mathematica
    nterms=64;a=ConstantArray[0,nterms];For[n=1;t=1,n<=nterms,n++,If[a[[n]]==0,a[[n]]=t;If[(d=4t-n)<=nterms,a[[d]]=a[[n]]];t++]]; a (* Paolo Xausa, Aug 27 2021 *)
    (* Second program, triangle rows *)
    nrows = 8;Table[rlen=2r-1;Permute[Range[s=1+(r-1)(r-2)/2,s+rlen-1],Join[Range[2,rlen,2],Range[1,rlen,2]]],{r,nrows}] (* Paolo Xausa, Aug 27 2021 *)
  • PARI
    {a(n)=local(A=vector(n),m=1); for(k=1,n,if(A[k]==0,A[k]=m;if(4*m-k<=#A,A[4*m-k]=m);m+=1));A[n]}
    
  • PARI
    T(r,c) = my(k = r-1-((c+1) % 2)); k*(k+1)/2+ceil(c/2);
    tabf(nn) = {for (r=1, nn, for(c = 1, 2*r-1, print1(T(r,c), ", ");); print;);} \\ Michel Marcus, Sep 09 2021

Formula

a(4*a(n)-n) = a(n).
Lim_{n->infinity} a(n)/n = 1/2.
Lim_{n->infinity} (a(n+1)-a(n))/sqrt(n) = 1.
a( A001614(n) ) = n; a( 4n - A001614(n) ) = n.
T(r,c) = k*(k+1)/2+ceiling(c/2), where k = r-1-((c+1) mod 2), r >= 1 and c >= 1. - Paolo Xausa, Sep 09 2021

A193218 Number of vertices in truncated tetrahedron with faces that are centered polygons.

Original entry on oeis.org

1, 21, 95, 259, 549, 1001, 1651, 2535, 3689, 5149, 6951, 9131, 11725, 14769, 18299, 22351, 26961, 32165, 37999, 44499, 51701, 59641, 68355, 77879, 88249, 99501, 111671, 124795, 138909, 154049, 170251, 187551, 205985, 225589, 246399, 268451, 291781, 316425
Offset: 1

Views

Author

Craig Ferguson, Jul 18 2011

Keywords

Comments

The sequence starts with a central vertex and expands outward with (n-1) centered polygonal pyramids producing a truncated tetrahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon in each face. For centered triangles see A005448 and centered hexagons A003215.
This sequence is the 18th in the series (1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496 and t = 36. While adjusting for offsets, the beginning sequence A049480 is generated by adding the square pyramidal numbers A000330 to the odd numbers A005408 and each subsequent sequence is found by adding another set of square pyramidals A000330. (T/2) * A000330(n) + A005408(n). At 30 * A000330 + A005408 = centered dodecahedral numbers, 36 * A000330 + A005408 = A193228 truncated octahedron and 90 * A000330 + A005408 = A193248 = truncated icosahedron and dodecahedron. All five of the "Centered Platonic Solids" numbers sequences are in this series of sequences. Also 4 out of five of the "truncated" platonic solid number sequences are in this series. - Bruce J. Nicholson, Jul 06 2018
It would be good to have a detailed description of how the sequence is constructed. Maybe in the Examples section? - N. J. A. Sloane, Sep 07 2018

Crossrefs

Cf. A260810 (partial sums).

Programs

  • Magma
    [6*n^3-9*n^2+5*n-1: n in [1..40]]; // Vincenzo Librandi, Aug 30 2011
  • Mathematica
    Table[6 n^3 - 9 n^2 + 5 n - 1, {n, 35}] (* Alonso del Arte, Jul 18 2011 *)
    CoefficientList[Series[(1+x)*(x^2+16*x+1)/(1-x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 04 2018 *)

Formula

a(n) = 6*n^3 - 9*n^2 + 5*n - 1.
G.f.: x*(1+x)*(x^2+16*x+1) / (1-x)^4. - R. J. Mathar, Aug 26 2011
a(n) = 18 * A000330(n-1) + A005408(n-1) = A063496(n) + A006331(n-1). - Bruce J. Nicholson, Jul 06 2018
Previous Showing 11-20 of 20 results.