cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A064948 a(n) = Sum_{i|n, j|n} max(i,j).

Original entry on oeis.org

1, 7, 10, 27, 16, 64, 22, 83, 55, 102, 34, 236, 40, 140, 140, 227, 52, 343, 58, 372, 192, 216, 70, 708, 141, 254, 244, 510, 88, 866, 94, 579, 296, 330, 296, 1241, 112, 368, 348, 1104, 124, 1184, 130, 786, 728, 444, 142, 1908, 267, 877, 452, 924, 160, 1504, 456
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(1,3,5,7)*(1,2,3,6) = 1*1 + 3*2 + 5*3 + 7*6 = 64.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((2*i-1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    A064948[n_] := #.(2*Range[Length[#]] - 1) & [Divisors[n]];
    Array[A064948, 100] (* Paolo Xausa, Aug 14 2025 *)
  • PARI
    a(n) = { my(d=divisors(n)); sum(i=1, #d, (2*i - 1)*d[i]) } \\ Harry J. Smith, Oct 01 2009

Formula

a(n) = Sum_{i=1..tau(n)} (2*i-1)*d_i, where {d_i}, i=1..tau(n), is the increasing sequence of the divisors of n.
a(n) = 2*A064944(n) - A000203(n). - Amiram Eldar, Dec 23 2024
From Ridouane Oudra, Aug 07 2025: (Start)
a(n) = A064944(n) + A064946(n).
a(n) = 2*A064946(n) + A000203(n).
a(n) = 2*A064840(n) - A064949(n). (End)

A071707 Numbers k that divide tau(k)*sigma(k).

Original entry on oeis.org

1, 2, 6, 12, 18, 24, 28, 40, 84, 120, 224, 234, 240, 252, 360, 468, 496, 672, 864, 936, 1638, 1920, 2016, 2480, 3276, 4320, 4680, 6048, 6528, 6552, 7440, 8128, 9360, 10880, 22320, 22932, 26208, 30240, 32640, 32760, 47616, 56896, 58752, 65520, 74880, 79360, 84480
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 03 2002

Keywords

Examples

			The divisors of 18 are {1,2,3,6,9,18}, so tau(18) = 6 and sigma(18) = 1+2+3+6+9+18 = 39, 18 is a term as 18*13 = 6*39 = tau(18)*sigma(18).
		

Crossrefs

A007691 is a subsequence.
Cf. A064840 (A000005(n)*A000203(n)).

Programs

  • Mathematica
    Select[Range[10^5], Divisible[Times @@ DivisorSigma[{0, 1}, #], #] &] (* Amiram Eldar, Apr 16 2025 *)
  • PARI
    isok(k) = {my(f = factor(k)); !((numdiv(f) * sigma(f)) % k);} \\ Amiram Eldar, Apr 16 2025

A233541 a(n) = sigma(n) + phi(n) + d(n).

Original entry on oeis.org

3, 6, 8, 12, 12, 18, 16, 23, 22, 26, 24, 38, 28, 34, 36, 44, 36, 51, 40, 56, 48, 50, 48, 76, 54, 58, 62, 74, 60, 88, 64, 85, 72, 74, 76, 112, 76, 82, 84, 114, 84, 116, 88, 110, 108, 98, 96, 150, 102, 119, 108, 128, 108, 146, 116, 152, 120, 122, 120, 196, 124
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 12 2013

Keywords

Comments

a(n) is the sum of the divisors of n plus the number of positive integers less than or equal to n and relatively prime to n plus the number of divisors of n.
If n is a prime, then a(n) = A064840(n). If n is a prime or a semiprime, then a(n) = 2(d(n) + n - 1).

Examples

			a(6) = 18; sigma(6) + phi(6) + d(6) = 12 + 2 + 4 = 18.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A233541:=n->sigma(n) + phi(n) + tau(n); seq(A233541(n), n=1..100);
  • Mathematica
    Table[DivisorSigma[0,n] + DivisorSigma[1,n] + EulerPhi[n], {n,100}]
  • PARI
    a(n) = sigma(n) + eulerphi(n) + numdiv(n); \\ Michel Marcus, Dec 07 2016

Formula

a(n) = A000203(n) + A000010(n) + A000005(n).
Dirichlet g.f.: (zeta(s)^3 + zeta(s-1)*zeta(s)^2 + zeta(s-1))/zeta(s). - Ilya Gutkovskiy, Dec 07 2016

A328485 Dirichlet g.f.: zeta(s)^2 * zeta(s-1) / zeta(2*s-1).

Original entry on oeis.org

1, 4, 5, 9, 7, 20, 9, 18, 15, 28, 13, 45, 15, 36, 35, 35, 19, 60, 21, 63, 45, 52, 25, 90, 33, 60, 43, 81, 31, 140, 33, 68, 65, 76, 63, 135, 39, 84, 75, 126, 43, 180, 45, 117, 105, 100, 49, 175, 59, 132, 95, 135, 55, 172, 91, 162, 105, 124, 61, 315, 63, 132, 135, 133, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Inverse Moebius transform of A034448.
Dirichlet convolution of A055615 with A064840.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(d)*tau(n/d)*sigma(n/d)*d, d=divisors(n)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Oct 16 2019
  • Mathematica
    Table[n DivisorSum[n, MoebiusMu[n/#] DivisorSigma[0, #] DivisorSigma[1, #]/# &], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[DivisorSum[k, # &, CoprimeQ[#, k/#] &] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := (p^(e + 1) - p)/(p - 1) + e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 10 2023 *)
  • PARI
    a(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); prod(i = 1, #p, (p[i]^(e[i] + 1) - p[i])/(p[i] - 1) + e[i] + 1);} \\ Amiram Eldar, Feb 10 2023

Formula

G.f.: Sum_{k>=1} usigma(k) * x^k / (1 - x^k), where usigma = A034448.
a(n) = Sum_{d|n} usigma(d).
a(n) = n * Sum_{d|n} mu(n/d) * tau(d) * sigma(d) / d, where mu = A008683, tau = A000005 and sigma = A000203.
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / (72 * zeta(3)). - Vaclav Kotesovec, Oct 17 2019
From Amiram Eldar, Feb 10 2023: (Start)
a(n) = Sum_{d|n} Sum_{d'|n, gcd(d, d')=1} d'.
Multiplicative with a(p^e) = (p^(e+1)-p)/(p-1) + e + 1. (End)

A087801 Greatest common divisor of tau(n)+sigma(n) and tau(n)*sigma(n), where tau = A000005 and sigma = A000203.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 2, 1, 1, 2, 2, 2, 4, 4, 4, 1, 4, 9, 2, 12, 4, 8, 2, 4, 1, 2, 4, 2, 4, 16, 2, 3, 4, 2, 4, 1, 4, 16, 4, 2, 4, 8, 2, 18, 12, 4, 2, 2, 3, 9, 4, 4, 4, 64, 4, 64, 4, 2, 2, 36, 4, 4, 2, 1, 8, 8, 2, 12, 4, 8, 2, 9, 4, 2, 2, 2, 4, 16, 2, 4, 1, 2, 2, 4, 16, 8, 4, 4, 4, 6, 4, 6, 4, 4, 4, 24
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 11 2003

Keywords

Comments

a(n) = GCD(A007503(n), A064840(n)).

Crossrefs

Programs

  • Mathematica
    GCD[Total[#],Times@@#]&/@Table[{DivisorSigma[0,n],DivisorSigma[1,n]},{n,100}] (* Harvey P. Dale, Jul 17 2018 *)
  • PARI
    A087801(n) = gcd(sigma(n)+numdiv(n), sigma(n)*numdiv(n)); \\ Antti Karttunen, May 22 2017

A126775 a(n) = phi(n)^2 * d(n) = A000010(n)^2 * A000005(n).

Original entry on oeis.org

1, 2, 8, 12, 32, 16, 72, 64, 108, 64, 200, 96, 288, 144, 256, 320, 512, 216, 648, 384, 576, 400, 968, 512, 1200, 576, 1296, 864, 1568, 512, 1800, 1536, 1600, 1024, 2304, 1296, 2592, 1296, 2304, 2048, 3200, 1152, 3528, 2400, 3456, 1936, 4232, 2560, 5292, 2400
Offset: 1

Views

Author

Jonathan Vos Post, May 27 2007

Keywords

Crossrefs

Programs

  • Magma
    [ EulerPhi(n)*EulerPhi(n)*NumberOfDivisors(n) : n in [1..100] ];
  • Mathematica
    Table[EulerPhi[n]^2 DivisorSigma[0,n],{n,50}] (* Harvey P. Dale, Dec 05 2012 *)

Formula

Multiplicative with a(p^e) = (e+1)*(p-1)^2*p^(2*e-2). - Amiram Eldar, Dec 29 2022
From Vaclav Kotesovec, May 31 2024: (Start)
Dirichlet g.f.: zeta(s-2)^2 * Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).
Sum_{k=1..n} a(k) ~ f(3) * n^3 * (log(n) + 2*gamma - 1/3 + f'(3)/f(3)) / 3, where
f(3) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264...,
f'(3) = f(3) * Sum_{p prime} 2*(2*p - 1) * log(p) / (p^3 + p^2 - 3*p + 1) = f(3) * 1.6860441157206199528397247528679297282000614932962665074593283751342385...
and gamma is the Euler-Mascheroni constant A001620. (End)

A327830 Numbers m such that the geometric mean of tau(m) and sigma(m) is an integer.

Original entry on oeis.org

1, 7, 17, 22, 30, 31, 71, 94, 97, 115, 119, 127, 138, 154, 164, 165, 199, 210, 214, 217, 232, 241, 260, 265, 318, 337, 343, 374, 382, 449, 497, 510, 513, 517, 527, 577, 647, 658, 668, 679, 682, 705, 745, 759, 805, 862, 881, 889, 894, 930, 966, 967, 996, 1102, 1125
Offset: 1

Views

Author

Bernard Schott, Sep 27 2019

Keywords

Comments

The first 20 terms of this sequence are also the first 20 terms of A144695: m such that sigma(m)/tau(m) is a square. Indeed, if sigma(m)/tau(m) is a square then sigma(m)*tau(m) is also a square, but the converse is false. These counterexamples are in A327831; the first one is a(21) = 232.
The primes p of the form 2*k^2 - 1: 7, 17, 31, 71, ... (A066436) form a subsequence because sigma(p) * tau(p) = (2*k)^2.
Another subsequence consists of the terms m such that sigma(m) and tau(m) are both squares; this occurs when m is the product of two distinct primes p*q, p < q where sigma(m) = (p+1)*(q+1) is a square and tau(m) = 4. The first few terms are 22, 94, 115, 119, 214, ... They are in A256152.

Examples

			sigma(30) = 72 and tau(30) = 8, sigma(30)*tau(30) = 576 = 24^2, hence 30 is a term.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A064840 (tau*sigma).
Cf. A011257 (similar, with phi(m) and sigma(m)), A144695 (sigma(m)/tau(m) is a square), A327831 (sigma(m) * tau(m) is a square but sigma(m)/tau(m) is not an integer).
Subsequences: A066436, A256152.

Programs

  • Magma
    [k:k in [1..1150]| IsSquare(#Divisors(k)*DivisorSigma(1,k))]; // Marius A. Burtea, Sep 27 2019
    
  • Maple
    filter:= s -> issqr(sigma(s)*tau(s)) : select(filter, [$1..2500]);
  • Mathematica
    Select[Range[1000], IntegerQ @ Sqrt[DivisorSigma[0, #] * DivisorSigma[1, #]] &] (* Amiram Eldar, Sep 27 2019 *)
  • PARI
    isok(m) = issquare(numdiv(m)*sigma(m)); \\ Michel Marcus, Sep 27 2019

A216365 Numbers n such that tau(n)*sigma(n) sets a new record.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 240, 300, 336, 360, 420, 480, 504, 540, 600, 630, 660, 720, 840, 1008, 1080, 1200, 1260, 1440, 1680, 2100, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 05 2012

Keywords

Comments

Positions of record values in A064840.
Not identical to A067128; e.g. a(22) = 144 < 168 = A067128(22).

Crossrefs

Programs

  • Mathematica
    lst = {}; k = 0; Do[n = DivisorSigma[0, i]*DivisorSigma[1, i]; If[n > k, AppendTo[lst, i]; k = n], {i, 7!}]; lst
  • PARI
    r=0;for(n=1,1e9,t=numdiv(n)*sigma(n);if(t>r,r=t;print1(n", "))) \\ Charles R Greathouse IV, Sep 05 2012

A309153 a(n) = A000203(n)*A001227(n).

Original entry on oeis.org

1, 3, 8, 7, 12, 24, 16, 15, 39, 36, 24, 56, 28, 48, 96, 31, 36, 117, 40, 84, 128, 72, 48, 120, 93, 84, 160, 112, 60, 288, 64, 63, 192, 108, 192, 273, 76, 120, 224, 180, 84, 384, 88, 168, 468, 144, 96, 248, 171, 279, 288, 196, 108, 480, 288, 240, 320, 180, 120, 672, 124, 192, 624, 127, 336, 576, 136, 252, 384
Offset: 1

Views

Author

Omar E. Pol, Jul 14 2019

Keywords

Comments

A001227(n) is denoted by Delta_0(n) in Glaisher 1907.
a(n) = A000203(n) iff n is a power of 2.

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, 1 &, OddQ] DivisorSigma[1, #] &, 69] (* Michael De Vlieger, Nov 22 2019 *)
    f[p_, e_] := (e+1)*(p^(e+1)-1)/(p-1); f[2, e_] := 2^(e+1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 01 2022 *)

Formula

a(n) = sigma(n)*delta(n).
Multiplicative with a(2^e) = 2^(e+1) - 1 and a(p^e) = (e+1)*(p^(e+1)-1)/(p-1) for p > 2. - Amiram Eldar, Nov 01 2022
From Amiram Eldar, Dec 04 2023: (Start)
Dirichlet g.f.: (4^s - 3*2^s + 2)/(4^s - 2) * (zeta(s)*zeta(s-1))^2/zeta(2*s-1).
Sum_{k=1..n} a(k) ~ (Pi^4/(168*zeta(3))) * n^2 * (log(n) + 2*gamma - 1/2 + 22*log(2)/21 + 2*zeta'(2)/zeta(2) - 2*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620). (End)

A324986 a(n) = Sum_{d|n} (tau(d)*sigma(d)) where tau(k) = the number of divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 7, 9, 28, 13, 63, 17, 88, 48, 91, 25, 252, 29, 119, 117, 243, 37, 336, 41, 364, 153, 175, 49, 792, 106, 203, 208, 476, 61, 819, 65, 621, 225, 259, 221, 1344, 77, 287, 261, 1144, 85, 1071, 89, 700, 624, 343, 97, 2187, 188, 742, 333, 812, 109, 1456, 325, 1496
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2019

Keywords

Comments

n divides a(n) for n: 1, 3, 4, 8, 12, 24, 28, 84, 88, 144, 264, 432, 440, 476, 1320, ...
Inverse Möbius transform of A064840. - Antti Karttunen, Mar 28 2019

Examples

			a(6) = tau(1)*sigma(1) + tau(2)*sigma(2) + tau(3)*sigma(3) + tau(6)*sigma(6) = (1*1) + (2*3) + (2*4) + (4*12) = 63.
		

Crossrefs

Programs

  • Magma
    [&+[NumberOfDivisors(d) * SumOfDivisors(d): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    Table[Sum[DivisorSigma[0, k]*DivisorSigma[1, k], {k, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Mar 23 2019 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=1, #d, numdiv(d[i])*sigma(d[i])) \\ Felix Fröhlich, Mar 23 2019
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(d)*sigma(d)); \\ Michel Marcus, Mar 24 2019

Formula

a(p) = 2p + 3 for p = primes (A000040).
a(n) = Sum_{d|n} A064840(d).
Previous Showing 11-20 of 25 results. Next