A201204
Half-convolution of Catalan sequence A000108 with itself.
Original entry on oeis.org
1, 1, 3, 7, 23, 66, 227, 715, 2529, 8398, 30275, 104006, 380162, 1337220, 4939443, 17678835, 65844845, 238819350, 895451117, 3282060210, 12374186318, 45741281820, 173257703723, 644952073662, 2452607696798, 9183676536076, 35042725663002, 131873975875180, 504697422982484, 1907493251046152
Offset: 0
-
C:= n -> binomial(2*n,n)/(n+1):
A:= n -> add(C(k)*C(n-k),k=0..floor(n/2));
seq(A(i),i=1..100); # Robert Israel, Jun 06 2014
-
Table[Sum[CatalanNumber[k]CatalanNumber[n-k],{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, Jun 12 2012 *)
Table[CatalanNumber[n + 1]/2 + 2^(2 n + 1) Binomial[1/2, n/2 + 1]^2, {n, 0, 30}] (* Vladimir Reshetnikov, Oct 03 2016 *)
A358588
Number of n-node ordered rooted trees of height equal to the number of internal (non-leaf) nodes.
Original entry on oeis.org
0, 0, 0, 0, 1, 8, 41, 171, 633, 2171, 7070, 22195, 67830, 203130, 598806, 1743258, 5023711, 14356226, 40737383, 114904941, 322432215, 900707165, 2506181060, 6948996085, 19207795836, 52944197508, 145567226556, 399314965956, 1093107693133, 2986640695436
Offset: 1
The a(5) = 1 and a(6) = 8 ordered trees:
((o)(o)) ((o)(o)o)
((o)(oo))
((o)o(o))
((oo)(o))
(o(o)(o))
(((o))(o))
(((o)(o)))
((o)((o)))
For leaves instead of height we have
A000891, unordered
A185650 aerated.
For leaves instead of internal nodes we have
A358590, unordered
A358589.
A001263 counts ordered rooted trees by nodes and leaves, unordered
A055277.
A080936 counts ordered rooted trees by nodes and height, unordered
A034781.
A090181 counts ordered rooted trees by nodes and internals, unord.
A358575.
-
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
-
\\ Needs R(n,f) defined in A358590.
seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023
A358584
Number of rooted trees with n nodes, at most half of which are leaves.
Original entry on oeis.org
0, 1, 1, 3, 5, 15, 28, 87, 176, 550, 1179, 3688, 8269, 25804, 59832, 186190, 443407, 1375388, 3346702, 10348509, 25632265, 79020511, 198670299, 610740694, 1555187172, 4768244803, 12276230777, 37546795678, 97601239282, 297831479850, 780790439063, 2377538260547
Offset: 1
The a(2) = 1 through a(6) = 15 trees:
(o) ((o)) ((oo)) (((oo))) (((ooo)))
(o(o)) ((o)(o)) ((o)(oo))
(((o))) ((o(o))) ((o(oo)))
(o((o))) ((oo(o)))
((((o)))) (o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o)((o)))
((o((o))))
(o(((o))))
(((((o)))))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}]<=Count[#,[_],{0,Infinity}]&]],{n,0,10}]
-
R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1 + exp( sum(i=1, j, 1/i * subst( subst( A + O(x*x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
seq(n) = {my(A=R(n)); vector(n, n, vecsum(Vecrev(A[n]/y)[1..n\2]))} \\ Andrew Howroyd, Dec 30 2022
A358591
Number of 2n-node rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.
Original entry on oeis.org
0, 0, 2, 17, 94, 464, 2162, 9743, 42962, 186584, 801316, 3412034, 14430740, 60700548, 254180426, 1060361147, 4409342954, 18285098288, 75645143516, 312286595342, 1286827096964, 5293833371408, 21745951533236, 89208948855542, 365523293690804, 1496048600896784
Offset: 1
The a(3) = 2 and a(4) = 17 trees:
((o)(oo)) (((o))(ooo))
(o(o)(o)) (((o)(ooo)))
(((oo))(oo))
(((oo)(oo)))
((o)((ooo)))
((o)(o(oo)))
((o)(oo(o)))
((o(o)(oo)))
((oo)(o(o)))
((oo(o)(o)))
(o((o))(oo))
(o((o)(oo)))
(o(o)((oo)))
(o(o)(o(o)))
(o(o(o)(o)))
(oo((o)(o)))
(oo(o)((o)))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,2,15,2}]
-
\\ Needs R(n,f) defined in A358589.
seq(n) = {Vecrev(R(2*n, (h,p)->if(h<=n, x^h*polcoef(polcoef(p, 2*h, x), h, y))), -n)} \\ Andrew Howroyd, Jan 01 2023
A358582
Number of rooted trees with n nodes, most of which are not leaves.
Original entry on oeis.org
0, 0, 1, 1, 5, 7, 28, 48, 176, 336, 1179, 2420, 8269, 17855, 59832, 134289, 443407, 1025685, 3346702, 7933161, 25632265, 62000170, 198670299, 488801159, 1555187172, 3882403641, 12276230777, 31034921462, 97601239282, 249471619165, 780790439063, 2015194486878
Offset: 1
The a(3) = 1 through a(6) = 7 trees:
((o)) (((o))) (((oo))) ((((oo))))
((o)(o)) (((o)(o)))
((o(o))) (((o(o))))
(o((o))) ((o)((o)))
((((o)))) ((o((o))))
(o(((o))))
(((((o)))))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}][_],{0,Infinity}]&]],{n,0,10}]
-
\\ See A358584 for R(n).
seq(n) = {my(A=R(n)); vector(n, n, vecsum(Vecrev(A[n]/y)[1..(n-1)\2]))} \\ Andrew Howroyd, Dec 30 2022
A358585
Number of ordered rooted trees with n nodes, most of which are leaves.
Original entry on oeis.org
1, 0, 1, 1, 7, 11, 66, 127, 715, 1549, 8398, 19691, 104006, 258194, 1337220, 3467115, 17678835, 47440745, 238819350, 659060677, 3282060210, 9271024542, 45741281820, 131788178171, 644952073662, 1890110798926, 9183676536076, 27316119923002, 131873975875180, 397407983278484
Offset: 1
The a(1) = 1 through a(6) = 11 ordered trees:
o . (oo) (ooo) (oooo) (ooooo)
((o)oo) ((o)ooo)
((oo)o) ((oo)oo)
((ooo)) ((ooo)o)
(o(o)o) ((oooo))
(o(oo)) (o(o)oo)
(oo(o)) (o(oo)o)
(o(ooo))
(oo(o)o)
(oo(oo))
(ooo(o))
The opposite is the same, unordered
A358582.
A001263 counts ordered rooted trees by nodes and leaves, unordered
A055277.
A080936 counts ordered rooted trees by nodes and height, unordered
A034781.
A090181 counts ordered rooted trees by nodes and internals, unord.
A358575.
-
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>Count[#,[_],{0,Infinity}]&]],{n,10}]
-
a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) - if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ Andrew Howroyd, Jan 13 2024
A358583
Number of rooted trees with n nodes, at least half of which are leaves.
Original entry on oeis.org
1, 1, 1, 3, 4, 13, 20, 67, 110, 383, 663, 2346, 4217, 15118, 27979, 101092, 191440, 695474, 1341974, 4893067, 9589567, 35055011, 69612556, 254923825, 511987473, 1877232869, 3807503552, 13972144807, 28585315026, 104955228432, 216381073935, 794739865822
Offset: 1
The a(1) = 1 through a(6) = 13 trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((oo)) ((ooo)) ((oooo))
(o(o)) (o(oo)) (o(ooo))
(oo(o)) (oo(oo))
(ooo(o))
(((ooo)))
((o)(oo))
((o(oo)))
((oo(o)))
(o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}]>=Count[#,[_],{0,Infinity}]&]],{n,1,10}]
-
\\ See A358584 for R(n).
seq(n) = {my(A=R(n)); vector(n, n, my(u=Vecrev(A[n]/y)); vecsum(u[(n-1)\2+1..#u]))} \\ Andrew Howroyd, Dec 31 2022
A001795
Coefficients of Legendre polynomials.
Original entry on oeis.org
1, 1, 7, 33, 715, 4199, 52003, 334305, 17678835, 119409675, 1641030105, 11435320455, 322476036831, 2295919134019, 32968493968795, 238436656380769, 27767032438524099, 203236010537432691, 2989949596465113373
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
A001795:= func< n | Numerator(Catalan(2*n)/4^n) >;
[A001795(n): n in [0..25]]; // G. C. Greubel, Apr 22 2025
-
Table[Numerator[CatalanNumber[2*n]/4^n], {n,0,30}] (* G. C. Greubel, Apr 22 2025 *)
-
my(x='x+O('x^30)); apply(numerator, Vec(((1-sqrt(1-4*x))/(2*x))^(1/2))) \\ Michel Marcus, Feb 04 2022
-
a(n)=numerator(binomial(2*n-1/2, n)/(2*n+1)) \\ Tani Akinari, Oct 22 2024
-
def A001795(n): return numerator(catalan_number(2*n)/4^n)
print([A001795(n) for n in range(31)]) # G. C. Greubel, Apr 22 2025
A201205
Bisection of half-convolution of Catalan sequence A000108; even part.
Original entry on oeis.org
1, 3, 23, 227, 2529, 30275, 380162, 4939443, 65844845, 895451117, 12374186318, 173257703723, 2452607696798, 35042725663002, 504697422982484, 7319313029400467, 106793147620036005, 1566546633240722681, 23089471526179716182, 341774295456352388245
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 1+2*n,
(2*n*(256*n^5-544*n^4+256*n^3+75*n^2-69*n+12)*a(n-1)
-(8*(4*n-5))*(4*n-3)*(8*n^2+n-1)*(2*n-3)^2*a(n-2))/
((2*n+1)*n*(8*n^2-15*n+6)*(n+1)^2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 28 2015
-
Table[(CatalanNumber[2 n + 1] + CatalanNumber[n]^2)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
A265101
a(n) = binomial(6*n + 5, 3*n + 1)/(6*n + 5).
Original entry on oeis.org
1, 30, 1144, 49742, 2340135, 115997970, 5967382200, 315614844558, 17055399281284, 937581428480312, 52267355178398304, 2947837630317717410, 167897169647656366330, 9643503773422181941740, 557939244828083793388560, 32486374828326106197187470
Offset: 0
-
[Binomial(6*n+5, 3*n+1)/(6*n+5): n in [0..15]]; // Vincenzo Librandi, Dec 09 2015
-
seq(1/(6*n + 5)*binomial(6*n + 5, 3*n + 1), n = 0..15);
-
Table[1/(6 n + 5) Binomial[6 n + 5, 3 n + 1], {n, 0, 20}] (* Vincenzo Librandi, Dec 09 2015 *)
-
a(n) = binomial(6*n + 5, 3*n + 1)/(6*n + 5); \\ Altug Alkan, Dec 07 2015
-
[binomial(6*n+5, 3*n+1)/(6*n+5) for n in (0..15)] # G. C. Greubel, Feb 16 2019
Comments