cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 101 results. Next

A346436 Decimal expansion of the constant Sum_{k>=0} (-1)^k/(8*k)!.

Original entry on oeis.org

9, 9, 9, 9, 7, 5, 1, 9, 8, 4, 1, 2, 7, 4, 6, 2, 0, 7, 4, 7, 1, 7, 3, 4, 9, 6, 0, 5, 2, 8, 1, 0, 1, 7, 0, 2, 4, 5, 5, 3, 6, 5, 5, 7, 9, 9, 9, 3, 1, 8, 7, 5, 5, 6, 0, 5, 7, 6, 5, 2, 4, 3, 8, 2, 0, 7, 9, 2, 3, 4, 9, 7, 5, 6, 4, 5, 0, 4, 8, 1, 1, 7, 6, 6, 1, 7, 2
Offset: 0

Views

Author

Sean A. Irvine, Jul 17 2021

Keywords

Examples

			0.9999751984127462074717349605281...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8}, -1/2^24], 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)
  • PARI
    sumalt(k=0, (-1)^k/(8*k)!) \\ Michel Marcus, Jul 18 2021

A346438 Decimal expansion of the constant Sum_{k>=0} (-1)^k/(6*k)!.

Original entry on oeis.org

9, 9, 8, 6, 1, 1, 1, 1, 3, 1, 9, 8, 7, 8, 6, 6, 5, 3, 7, 0, 5, 8, 5, 2, 9, 3, 4, 9, 0, 7, 4, 2, 2, 8, 4, 7, 1, 9, 8, 3, 3, 3, 7, 6, 2, 8, 2, 0, 0, 4, 5, 7, 6, 4, 5, 1, 6, 5, 3, 6, 1, 5, 2, 6, 4, 9, 5, 4, 7, 6, 4, 6, 5, 6, 3, 8, 4, 0, 6, 8, 6, 7, 6, 5, 4, 3, 4
Offset: 0

Views

Author

Sean A. Irvine, Jul 17 2021

Keywords

Examples

			0.9986111131987866537058529349...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Cos[1] + 2*Cos[1/2]*Cosh[Sqrt[3]/2])/3, 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)
  • PARI
    sumalt(k=0, (-1)^k/(6*k)!) \\ Michel Marcus, Jul 18 2021

Formula

Equals (cos(1) + 2*cos(1/2)*cosh(sqrt(3)/2))/3. - Amiram Eldar, Jun 04 2023

A346439 Decimal expansion of the constant Sum_{k>=0} (-1)^k/(5*k)!.

Original entry on oeis.org

9, 9, 1, 6, 6, 6, 9, 4, 2, 2, 3, 9, 0, 9, 4, 1, 9, 0, 5, 6, 3, 4, 2, 2, 9, 0, 8, 4, 5, 3, 9, 8, 6, 2, 0, 5, 3, 1, 7, 5, 9, 1, 5, 2, 5, 0, 6, 7, 8, 0, 8, 3, 9, 3, 3, 5, 8, 1, 3, 5, 9, 3, 9, 3, 7, 7, 8, 5, 4, 7, 5, 0, 2, 8, 2, 5, 5, 9, 2, 0, 8, 1, 8, 6, 3, 8, 9
Offset: 0

Views

Author

Sean A. Irvine, Jul 17 2021

Keywords

Examples

			0.9916669422390941905634229...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, -1/5^5], 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)
  • PARI
    sumalt(k=0, (-1)^k/(5*k)!) \\ Michel Marcus, Jul 18 2021

A135002 Decimal expansion of 2/e.

Original entry on oeis.org

7, 3, 5, 7, 5, 8, 8, 8, 2, 3, 4, 2, 8, 8, 4, 6, 4, 3, 1, 9, 1, 0, 4, 7, 5, 4, 0, 3, 2, 2, 9, 2, 1, 7, 3, 4, 8, 9, 1, 6, 2, 2, 2, 6, 2, 0, 6, 3, 5, 3, 5, 6, 6, 9, 0, 1, 5, 6, 7, 3, 6, 0, 3, 3, 9, 4, 9, 2, 2, 9, 9, 1, 4, 8, 9, 7, 9, 9, 6
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Comments

From Johannes W. Meijer, Jun 27 2016: (Start)
This constant is related to the values of zeta(2*n-1) of the Riemann zeta function and the Euler Mascheroni constant gamma. If we define Z(n) = (1/n) * (sum(zeta(2*n-2*k-1) * Z(k), k=0..n-2) + gamma * Z(n-1)), with Z(0) = 1, then limit(Z(n), n -> infinity) = 2/exp(1).
Similar formulas appear in A090998 and A112302.
The structure of the n! * Z(n) formulas leads to the multinomial coefficients A036039. (End).

Examples

			0.735758882342... = 2*A068985.
		

Crossrefs

Programs

Formula

Integral of log x from x = 1/e to e. - Charles R Greathouse IV, Apr 16 2015
Equals lim_{k->0} 2*(1 - k)^(1/k). - Ilya Gutkovskiy, Jun 27 2016
Equals Sum_{i>=0} ((-1)^i)(1-i)/i!. - Maciej Kaniewski, Sep 10 2017
Equals Sum_{i>=0} ((-1)^i)(i^2+2)/i!. - Maciej Kaniewski, Sep 12 2017
From Peter Bala, Mar 21 2022: (Start)
2/e = Integral_{x = 1..oo} (2*x/(1+x))^n*(x^2+x+1-n)/x^2*exp(-x) dx;
2/e = - Integral_{x = 0..1} (2*x/(1+x))^n*(x^2+x+1-n)/x^2*exp(-x) dx, both valid for n >= 2. (End)

A137204 Decimal expansion of e + 1/e.

Original entry on oeis.org

3, 0, 8, 6, 1, 6, 1, 2, 6, 9, 6, 3, 0, 4, 8, 7, 5, 5, 6, 9, 5, 5, 8, 1, 1, 2, 4, 1, 5, 1, 4, 1, 2, 3, 3, 6, 5, 2, 0, 3, 0, 5, 8, 2, 2, 4, 7, 3, 1, 7, 2, 7, 4, 0, 9, 4, 7, 4, 8, 0, 4, 4, 2, 9, 4, 2, 1, 5, 3, 8, 1, 2, 6, 0, 9, 8, 4, 4, 7, 3, 9, 7, 9, 2, 8, 5, 2, 9, 4, 5, 2, 8, 7, 1, 0, 8, 6, 0, 7, 1, 1, 7, 4, 0, 9
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 04 2008

Keywords

Examples

			3.086161269630487556955811241514123365203058224731727...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E + 1/E, 10, 120][[1]] (* Amiram Eldar, Jun 20 2023 *)
  • PARI
    exp(1)+1/exp(1) \\ Michel Marcus, Mar 14 2013

Formula

Equals 2*A073743. - Bruno Berselli, Mar 14 2013

A174548 Decimal expansion of e - 1/e.

Original entry on oeis.org

2, 3, 5, 0, 4, 0, 2, 3, 8, 7, 2, 8, 7, 6, 0, 2, 9, 1, 3, 7, 6, 4, 7, 6, 3, 7, 0, 1, 1, 9, 1, 2, 0, 1, 6, 3, 0, 3, 1, 1, 4, 3, 5, 9, 6, 2, 6, 6, 8, 1, 9, 1, 7, 4, 0, 4, 5, 9, 1, 3, 0, 8, 2, 6, 0, 2, 6, 6, 1, 5, 1, 3, 4, 6, 0, 8, 6, 4, 7, 7, 9, 1, 2, 1, 4, 2, 3, 4, 9, 0, 4, 1, 7, 9, 2, 4, 6, 7, 8, 3, 6, 8, 0, 8, 3
Offset: 1

Views

Author

Paul Curtz, Mar 22 2010

Keywords

Examples

			2.3504023872876029137647637...
		

Crossrefs

Cf. A001113 (e), A068985 (1/e), and A137204 (e + 1/e), A073742 (sinh(1)).

Programs

  • Maple
    evalf(exp(1)-exp(-1)) ; # R. J. Mathar, Oct 14 2011
  • Mathematica
    RealDigits[E - 1/E, 10, 111][[1]]
  • PARI
    exp(1) - exp(-1) \\ Michel Marcus, May 05 2019

Formula

Equals 2 * sinh(1) = 2 * A073742. - Amiram Eldar, Nov 25 2020

Extensions

Edited and extended by Robert G. Wilson v, Apr 25 2010

A032634 a(n) = floor(n/e).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 27
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Differs from A057367 first at a(49). - R. J. Mathar, Jan 28 2013

Crossrefs

Beatty seq. of A068985.

Programs

A059193 Engel expansion of 1/e = 0.367879... .

Original entry on oeis.org

3, 10, 28, 54, 88, 130, 180, 238, 304, 378, 460, 550, 648, 754, 868, 990, 1120, 1258, 1404, 1558, 1720, 1890, 2068, 2254, 2448, 2650, 2860, 3078, 3304, 3538, 3780, 4030, 4288, 4554, 4828, 5110, 5400, 5698, 6004, 6318, 6640, 6970, 7308, 7654, 8008, 8370, 8740
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • Friedrich Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[1/E, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)
    Join[{3}, Table[2*(2*n+1)*(n-1), {n, 1, 200}]] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
    Join[{3},LinearRecurrence[{3,-3,1},{10,28,54},50]] (* Harvey P. Dale, May 10 2012 *)
  • PARI
    Vec(x*(3 + x + 7*x^2 - 3*x^3)/(1-x)^3 + O(x^50)) \\ G. C. Greubel, Dec 27 2016

Formula

a(n) = 2*(2*n+1)*(n-1) (for n>1) follows from 1/e = Sum_{n>=1} (1/(2*n)! - 1/(2*n+1)!). - Helena Verrill (verrill(AT)math.lsu.edu), Jan 19 2004
a(1)=3, a(2)=10, a(1)=28, a(2)=54, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 10 2012
From G. C. Greubel, Dec 27 2016: (Start)
G.f.: x*(3 + x + 7*x^2 - 3*x^3)/(1-x)^3.
E.g.f.: 2 + 3*x + 2*(2*x^2 + x - 1)*exp(x). (End)
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = 7/9 - log(2)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/9 + Pi/12 - log(2)/6. (End)

A242674 Decimal expansion of the asymptotic probability of success in one of the Secretary problems.

Original entry on oeis.org

5, 8, 0, 1, 6, 4, 2, 2, 3, 9, 2, 0, 8, 5, 5, 3, 4, 6, 4, 2, 6, 0, 0, 8, 3, 2, 3, 5, 7, 2, 9, 9, 7, 2, 7, 6, 6, 3, 3, 0, 8, 8, 6, 3, 8, 1, 1, 1, 1, 0, 1, 4, 0, 4, 3, 1, 6, 8, 7, 4, 1, 1, 7, 9, 2, 1, 6, 6, 1, 3, 8, 7, 7, 9, 6, 9, 2, 9, 2, 4, 9, 1, 8, 4, 5, 9, 3, 1, 5, 2, 6, 8, 4, 4, 7, 0, 3, 4, 7, 4
Offset: 0

Views

Author

Jean-François Alcover, May 20 2014

Keywords

Comments

This is the asymptotic probability of success for the full-information problem with uniform distribution: we can not only determine which of any two applicants is better than the other, but also determine his/her absolute value, and that value is known to be uniformly distributed on a known interval (say, [0, 1]), independently for each applicant; so we have more information than in the basic version of the problem (for which the chance of success is given by A068985), so the chance of success is greater. Here the number of applicants is known in advance (although we consider the limiting case when it is sent to infinity); for the variant where it is itself a random variable, see A325905. - Andrey Zabolotskiy, Sep 14 2019

Examples

			0.580164223920855346426008323572997276633...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15, p. 362.

Crossrefs

Programs

  • Mathematica
    a = x /. FindRoot[ExpIntegralEi[x] - EulerGamma - Log[x] == 1, {x, 1}, WorkingPrecision -> 105]; Exp[-a] - (Exp[a]-a-1)*ExpIntegralEi[-a] // RealDigits[#, 10, 100]& // First

Formula

exp(-a) - (exp(a)-a-1)*Ei(-a), where a is the unique real solution of the equation Ei(a)-gamma-log(a) = 1, Ei being the exponential integral function, and gamma the Euler-Mascheroni constant (0.5772156649...).

A052520 Number of pairs of sequences of cardinality at least 2.

Original entry on oeis.org

0, 0, 0, 0, 24, 240, 2160, 20160, 201600, 2177280, 25401600, 319334400, 4311014400, 62270208000, 958961203200, 15692092416000, 271996268544000, 4979623993344000, 96035605585920000, 1946321606541312000, 41359334139002880000, 919636959090769920000, 21356013827774545920000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

  • GAP
    Concatenation([0,0,0,0], List([4..20], n-> (n-3)*Factorial(n))); # G. C. Greubel, May 13 2019
  • Magma
    [n le 3 select 0 else (n-3)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{B=Sequence(Z,2 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[Sum[n!, {i,4,n}], {n, 0, 19}] (* Zerinvary Lajos, Jul 12 2009 *)
    With[{nn=20},CoefficientList[Series[x^4/(x-1)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 03 2016 *)
  • PARI
    {a(n) = if(n<4, 0, (n-3)*n!)}; \\ G. C. Greubel, May 13 2019
    
  • Sage
    [0,0,0,0]+[(n-3)*factorial(n) for n in (4..20)] # G. C. Greubel, May 13 2019
    

Formula

E.g.f.: x^4/(1-x)^2.
(n-3)*a(n+1) + (2+n-n^2)*a(n) = 0, with a(0) = a(1) = a(2) = a(3) = 0, a(4) = 24.
a(n) = (n-3)*n!, n>2.
a(n) = (n+1)!*(n-3)/(n+1), n>2. - Gary Detlefs, Oct 02 2011
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=4} 1/a(n) = 59/36 - 2*e/3 - gamma/6 + Ei(1)/6 = 59/36 - (2/3)*A001113 - (1/6)*A001620 + A091725/2.
Sum_{n>=4} (-1)^n/a(n) = 1/36 - 1/(3*e) + gamma/6 - Ei(-1)/6 = 1/36 - (1/3)*A068985 + (1/6)*A001620 + (1/6)*A099285. (End)
Previous Showing 31-40 of 101 results. Next