cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A139273 a(n) = n*(8*n - 3).

Original entry on oeis.org

0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139277 in the same spiral.
Also, sequence of numbers of the form d*A000217(n-1) + 5*n with generating functions x*(5+(d-5)*x)/(1-x)^3; the inverse binomial transform is 0,5,d,0,0,.. (0 continued). See Crossrefs. - Bruno Berselli, Feb 11 2011
Even decagonal numbers divided by 2. - Omar E. Pol, Aug 19 2011

Crossrefs

Programs

  • Magma
    [ n*(8*n-3) : n in [0..40] ];  // Bruno Berselli, Feb 11 2011
    
  • Mathematica
    Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 8*n^2 - 3*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 11 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 11*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A051866(n). (End)
a(n) = A028994(n)/2. - Omar E. Pol, Aug 19 2011
a(0)=0, a(1)=5, a(2)=26; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 02 2012
E.g.f.: (8*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 18 2017
Sum_{n>=1} 1/a(n) = 4*log(2)/3 - (sqrt(2)-1)*Pi/6 - sqrt(2)*arccoth(sqrt(2))/3. - Amiram Eldar, Jul 03 2020

A010006 Coordination sequence for C_3 lattice: a(n) = 16*n^2 + 2 (n>0), a(0)=1.

Original entry on oeis.org

1, 18, 66, 146, 258, 402, 578, 786, 1026, 1298, 1602, 1938, 2306, 2706, 3138, 3602, 4098, 4626, 5186, 5778, 6402, 7058, 7746, 8466, 9218, 10002, 10818, 11666, 12546, 13458, 14402, 15378, 16386, 17426, 18498, 19602, 20738, 21906, 23106, 24338, 25602, 26898
Offset: 0

Views

Author

N. J. A. Sloane, mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Comments

If Y_i (i=1,2,3) are 2-blocks of a (2n+1)-set X then a(n-1) is the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Oct 28 2007
Also sequence found by reading the segment (1, 18) together with the line from 18, in the direction 18, 66, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Cf. A206399. For the coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C_3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50). Cf. A137513.

Programs

Formula

a(0)=1, a(n) = 16*n^2 + 2, n >= 1.
G.f.: (1+x)*(1+14*x+x^2)/(1-x)^3.
G.f. for coordination sequence of C_n lattice: (1/(1-z)^n)*Sum_{i=0..n} binomial(2*n, 2*i)*z^i.
E.g.f.: (x*(x+1)*16+2)*e^x - 1. - Gopinath A. R., Feb 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=66, a(3)=146. - Harvey P. Dale, Oct 15 2012
G.f. for sequence with interpolated zeros: cosh(6*arctanh(x)) = (1/2)*( ((1 - x)/(1 + x))^3 + ((1 + x)/(1 - x))^3) = 1 + 18*x^2 + 66*x^4 + 146*x^6 + .... More generally, cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. Note that exp(t*arctanh(x)) is the e.g.f. for the Mittag_Leffler polynomials. See A137513. - Peter Bala, Apr 09 2017
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(2)/16*Pi*coth( Pi*sqrt(2)/4) = 1.095237238050... - R. J. Mathar, May 07 2024
a(n) = 2*A081585(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069129(n)+A069129(n+1). - R. J. Mathar, May 07 2024

A139278 a(n) = n*(8*n+7).

Original entry on oeis.org

0, 15, 46, 93, 156, 235, 330, 441, 568, 711, 870, 1045, 1236, 1443, 1666, 1905, 2160, 2431, 2718, 3021, 3340, 3675, 4026, 4393, 4776, 5175, 5590, 6021, 6468, 6931, 7410, 7905, 8416, 8943, 9486, 10045, 10620, 11211, 11818, 12441, 13080
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the segment (0, 15) together with the line from 15, in the direction 15, 46, ..., in the square spiral whose vertices are the triangular numbers A000217.

Crossrefs

Programs

  • Mathematica
    Table[n (8 n + 7), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 15, 46}, 50] (* Harvey P. Dale, Oct 07 2015 *)
  • PARI
    a(n)=n*(8*n+7) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 8*n^2 + 7*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-1 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(x+15)/(1-x)^3.
E.g.f.: (8*x^2 + 15*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/49 + (sqrt(2)+1)*Pi/14 - 4*log(2)/7 - sqrt(2)*log(sqrt(2)+1)/7. - Amiram Eldar, Mar 17 2022

A139272 a(n) = n*(8*n-5).

Original entry on oeis.org

0, 3, 22, 57, 108, 175, 258, 357, 472, 603, 750, 913, 1092, 1287, 1498, 1725, 1968, 2227, 2502, 2793, 3100, 3423, 3762, 4117, 4488, 4875, 5278, 5697, 6132, 6583, 7050, 7533, 8032, 8547, 9078, 9625, 10188, 10767, 11362, 11973, 12600
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 3, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139276 in the same spiral.

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=16: see Comments lines of A226492.

Programs

Formula

a(n) = 8*n^2 - 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 13 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(13*x + 3)/(1-x)^3.
E.g.f.: (8*x^2 + 3*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = ((sqrt(2)-1)*Pi + 8*log(2) - 2*sqrt(2)*log(sqrt(2)+1))/10. - Amiram Eldar, Mar 17 2022

A139274 a(n) = n*(8*n-1).

Original entry on oeis.org

0, 7, 30, 69, 124, 195, 282, 385, 504, 639, 790, 957, 1140, 1339, 1554, 1785, 2032, 2295, 2574, 2869, 3180, 3507, 3850, 4209, 4584, 4975, 5382, 5805, 6244, 6699, 7170, 7657, 8160, 8679, 9214, 9765, 10332, 10915, 11514, 12129, 12760, 13407, 14070, 14749
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the triangular numbers A000217.
Polygonal number connection: 2*P_n + 5*S_n where P_n is the n-th pentagonal number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010

Examples

			a(1) = 16*1 + 0 - 9 = 7; a(2) = 16*2 + 7 - 9 = 30; a(3) = 16*3 + 30 - 9 = 69. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = (1/3) * Sum_{i=n..(7*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(9*x+7)/(1-x)^3.
E.g.f.: (8*x^2 + 7*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 4*log(2) + sqrt(2)*log(sqrt(2)+1) - (sqrt(2)+1)*Pi/2. - Amiram Eldar, Mar 18 2022

A195317 Centered 40-gonal numbers.

Original entry on oeis.org

1, 41, 121, 241, 401, 601, 841, 1121, 1441, 1801, 2201, 2641, 3121, 3641, 4201, 4801, 5441, 6121, 6841, 7601, 8401, 9241, 10121, 11041, 12001, 13001, 14041, 15121, 16241, 17401, 18601, 19841, 21121, 22441, 23801, 25201, 26641, 28121, 29641, 31201, 32801, 34441, 36121
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Also centered tetracontagonal numbers or centered tetrakaicontagonal numbers. Also sequence found by reading the line from 1, in the direction 1, 41, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Semi-axis opposite to A195322 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 20*n^2 - 20*n + 1.
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(5))/(8*sqrt(5)). - Amiram Eldar, Feb 11 2022
G.f.: -x*(1+38*x+x^2)/(x-1)^3. - R. J. Mathar, May 07 2024
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(20*x^2 + 1) - 1.
a(n) = 2*A069133(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A069131 Centered 18-gonal numbers.

Original entry on oeis.org

1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 18, 18, 0, 0, 0, ...]. Example: a(3) = 55 = (1, 2, 1) dot (1, 18, 18) = (1 + 36 + 18). - Gary W. Adamson, Aug 24 2010
Narayana transform (A001263) of [1, 18, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Lamine Ngom, Aug 19 2021: (Start)
Sequence is a spoke of the hexagonal spiral built from the terms of A016777 (see illustration in links section).
a(n) is a bisection of A195042.
a(n) is a trisection of A028387.
a(n) + 1 is promic (A002378).
a(n) + 2 is a trisection of A002061.
a(n) + 9 is the arithmetic mean of its neighbors.
4*a(n) + 5 is a square: A016945(n)^2. (End)

Examples

			a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
		

Crossrefs

Programs

Formula

a(n) = 9*n^2 - 9*n + 1.
a(n) = 18*n + a(n-1) - 18 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: ( x*(1+16*x+x^2) ) / ( (1-x)^3 ). - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=19, a(3)=55. - Harvey P. Dale, Jan 20 2014
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5)*Pi/6)/(3*sqrt(5)).
Sum_{n>=1} a(n)/n! = 10*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 10/e - 1. (End)
From Lamine Ngom, Aug 19 2021: (Start)
a(n) = 18*A000217(n) + 1 = 9*A002378(n) + 1.
a(n) = 3*A003215(n) - 2.
a(n) = A247792(n) - 9*n.
a(n) = A082040(n) + A304163(n) - a(n-1) = A016778(n) + A016790(n) - a(n-1), n > 0.
a(n) + a(n+1) = 2*A247792(n) = A010008(n), n > 0.
a(n+1) - a(n) = 18*n = A008600(n). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n)= A000290(n) + A139278(n-1)
a(n) = A069129(n) + A002378(n-1)
a(n) = A062786(n) + 8*A000217(n-1)
a(n) = A062786(n) + A033996(n-1)
a(n) = A060544(n) + 9*A000217(n-1)
a(n) = A060544(n) + A027468(n-1)
a(n) = A016754(n-1) + 10*A000217(n-1)
a(n) = A016754(n-1) + A124080
a(n) = A069099(n) + 11*A000217(n-1)
a(n) = A069099(n) + A152740(n-1)
a(n) = A003215(n-1) + 12*A000217(n-1)
a(n) = A003215(n-1) + A049598(n-1)
a(n) = A005891(n-1) + 13*A000217(n-1)
a(n) = A005891(n-1) + A152741(n-1)
a(n) = A001844(n) + 14*A000217(n-1)
a(n) = A001844(n) + A163756(n-1)
a(n) = A005448(n) + 15*A000217(n-1)
a(n) = A005448(n) + A194715(n-1). (End)
E.g.f.: exp(x)*(1 + 9*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023

A139276 a(n) = n*(8*n+3).

Original entry on oeis.org

0, 11, 38, 81, 140, 215, 306, 413, 536, 675, 830, 1001, 1188, 1391, 1610, 1845, 2096, 2363, 2646, 2945, 3260, 3591, 3938, 4301, 4680, 5075, 5486, 5913, 6356, 6815, 7290, 7781, 8288, 8811, 9350, 9905, 10476, 11063, 11666, 12285, 12920
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11,..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139272 in the same spiral.

Examples

			a(1)=16*1+0-5=11; a(2)=16*2+11-5=38; a(3)=16*3+38-5=81. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 3*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-5 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(5*x + 11)/(1-x)^3.
E.g.f.: (8*x^2 + 11*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/9 - (sqrt(2)-1)*Pi/6 - 4*log(2)/3 + sqrt(2)*log(sqrt(2)+1)/3. - Amiram Eldar, Mar 17 2022

A200993 Triangular numbers, T(m), that are two-thirds of another triangular number; T(m) such that 3*T(m) = 2*T(k) for some k.

Original entry on oeis.org

0, 10, 990, 97020, 9506980, 931587030, 91286021970, 8945098566040, 876528373449960, 85890835499530050, 8416425350580494950, 824723793521388975060, 80814515339745539060940, 7918997779501541438997070, 775980967875811315482651930, 76038215854050007375860892080
Offset: 0

Views

Author

Charlie Marion, Dec 15 2011

Keywords

Comments

For n>1, a(n) = 98*a(n-1) - a (n-2) + 10. In general, for m>0, let b(n) be those triangular numbers such that for some triangular number c(n), (m+1)*b(n) = m*c(n). Then b(0) = 0, b(1)= A014105(m) and for n>1, b(n) = 2*A069129(m+1)*b(n-1) - b(n-2) + A014105(m).
Further, c(0) = 0, c(1) = A000384(m+1) and for n>1, c(n) = 2*A069129(m+1)*c(n-1) - c(n-2) + A000384(m+1).

Examples

			3*0 = 2*0.
3*10 = 2*15.
3*990 = 2*1485.
3*97020 = 2*145530.
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(10*x/((1-x)*(x^2-98*x+1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    LinearRecurrence[{99,-99,1},{0,10,990},20] (* Harvey P. Dale, Feb 25 2018 *)
  • PARI
    concat(0, Vec(10*x/((1-x)*(1-98*x+x^2)) + O(x^40))) \\ Colin Barker, Mar 02 2016
    

Formula

G.f. 10*x / ((1-x)*(x^2-98*x+1)). - R. J. Mathar, Dec 20 2011
a(n) = 99*a(n-1)-99*a(n-2)+a(n-3) for n>2. - Colin Barker, Mar 02 2016
a(n) = (-10+(5-2*sqrt(6))*(49+20*sqrt(6))^(-n)+(5+2*sqrt(6))*(49+20*sqrt(6))^n)/96. - Colin Barker, Mar 07 2016

A108099 a(n) = 8*n^2 + 8*n + 4.

Original entry on oeis.org

4, 20, 52, 100, 164, 244, 340, 452, 580, 724, 884, 1060, 1252, 1460, 1684, 1924, 2180, 2452, 2740, 3044, 3364, 3700, 4052, 4420, 4804, 5204, 5620, 6052, 6500, 6964, 7444, 7940, 8452, 8980, 9524, 10084, 10660, 11252, 11860, 12484, 13124, 13780, 14452, 15140, 15844
Offset: 0

Views

Author

Dorthe Roel (dorthe_roel(AT)hotmail.com or dorthe.roel1(AT)skolekom.dk), Jun 07 2005

Keywords

Comments

Also the number for Waterman [polyhedra] have a unit rhombic dodecahedron face so sqrt 4, sqrt 20, sqrt 52, etc...and a one-to-one match...that is, no omissions and no extras. - Steve Waterman and Roger Kaufman (swaterman(AT)watermanpolyhedron.com), Apr 02 2009. [This sentence makes no sense - some words must have been dropped. - N. J. A. Sloane, Jun 12 2014]
Also, sequence found by reading the segment (4,20) together with the line from 20, in the direction 20, 52, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 04 2011
Sum of consecutive even squares: (2*n)^2 + (2*n + 2)^2 = 8*n^2 + 8*n + 4. - Michel Marcus, Jan 27 2014

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 8*n + 4.
G.f.: 4*(1+2*x+x^2)/(1-x)^3.
a(n) = 16*n + a(n-1), a(0)=4. - Vincenzo Librandi, Nov 13 2010
a(n) = A069129(n+1) + 3. - Omar E. Pol, Sep 04 2011
a(n) = A035008(n) + 4. - Omar E. Pol, Jun 12 2014
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: 4*(1 + 4*x + 2*x^2)*exp(x).
a(n) = 4*A001844(n) = 2*A069894(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Previous Showing 11-20 of 34 results. Next