cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A300579 Expansion of Product_{k>=1} 1/(1 - 3^(k-1)*x^k).

Original entry on oeis.org

1, 1, 4, 13, 49, 157, 589, 1885, 6826, 22378, 78754, 256630, 904711, 2934247, 10133851, 33287620, 113522089, 370582069, 1262300701, 4110883510, 13869616495, 45364050184, 151708228636, 494743296757, 1654133919475, 5379427446952, 17858926956532, 58219580395822
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2018

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1 - d^(k-1)*x^k), where d > 1, then a(n) ~ sqrt(d-1) * polylog(2, 1/d)^(1/4) * d^(n - 1/2) * exp(2*sqrt(polylog(2, 1/d)*n)) / (2*sqrt(Pi)*n^(3/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 - 3^(k-1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ polylog(2, 1/3)^(1/4) * 3^(n - 1/2) * exp(2*sqrt(polylog(2, 1/3)*n)) / (sqrt(2*Pi) * n^(3/4)), where polylog(2, 1/3) = 0.36621322997706348761674629...
a(n) = Sum_{k=0..n} p(n,k) * 3^(n-k), where p(n,k) is the number of partitions of n into k parts. - Ilya Gutkovskiy, Jun 08 2022

A336130 Number of ways to split a strict composition of n into contiguous subsequences all having the same sum.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 15, 13, 23, 27, 73, 65, 129, 133, 241, 375, 519, 617, 1047, 1177, 1859, 2871, 3913, 4757, 7653, 8761, 13273, 16155, 28803, 30461, 50727, 55741, 87743, 100707, 152233, 168425, 308937, 315973, 500257, 571743, 871335, 958265, 1511583, 1621273, 2449259, 3095511, 4335385, 4957877, 7554717, 8407537, 12325993, 14301411, 20348691, 22896077, 33647199, 40267141, 56412983, 66090291, 93371665, 106615841, 155161833
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(7) = 13 splits:
  (1)  (2)  (3)    (4)    (5)    (6)        (7)
            (1,2)  (1,3)  (1,4)  (1,5)      (1,6)
            (2,1)  (3,1)  (2,3)  (2,4)      (2,5)
                          (3,2)  (4,2)      (3,4)
                          (4,1)  (5,1)      (4,3)
                                 (1,2,3)    (5,2)
                                 (1,3,2)    (6,1)
                                 (2,1,3)    (1,2,4)
                                 (2,3,1)    (1,4,2)
                                 (3,1,2)    (2,1,4)
                                 (3,2,1)    (2,4,1)
                                 (1,2),(3)  (4,1,2)
                                 (2,1),(3)  (4,2,1)
                                 (3),(1,2)
                                 (3),(2,1)
		

Crossrefs

The version with different instead of equal sums is A336128.
Starting with a non-strict composition gives A074854.
Starting with a partition gives A317715.
Starting with a strict partition gives A318683.
Set partitions with equal block-sums are A035470.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],SameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}]

Extensions

a(31)-a(60) from Max Alekseyev, Feb 14 2024

A074854 a(n) = Sum_{d|n} (2^(n-d)).

Original entry on oeis.org

1, 3, 5, 13, 17, 57, 65, 209, 321, 801, 1025, 3905, 4097, 12417, 21505, 53505, 65537, 233985, 262145, 885761, 1327105, 3147777, 4194305, 16060417, 17825793, 50339841, 84148225, 220217345, 268435457, 990937089, 1073741825, 3506503681
Offset: 1

Views

Author

Miklos Kristof, Sep 11 2002

Keywords

Comments

A034729 = Sum_{d|n} (2^(d-1)).
If p is a prime, then a(p) = A034729(p) = 2^(p-1)+1.
From Gus Wiseman, Jul 14 2020: (Start)
Number of ways to tile a rectangle of size n using horizontal strips. Also the number of ways to choose a composition of each part of a constant partition of n. The a(0) = 1 through a(5) = 17 splittings are:
() (1) (2) (3) (4) (5)
(1,1) (1,2) (1,3) (1,4)
(1),(1) (2,1) (2,2) (2,3)
(1,1,1) (3,1) (3,2)
(1),(1),(1) (1,1,2) (4,1)
(1,2,1) (1,1,3)
(2,1,1) (1,2,2)
(2),(2) (1,3,1)
(1,1,1,1) (2,1,2)
(1,1),(2) (2,2,1)
(2),(1,1) (3,1,1)
(1,1),(1,1) (1,1,1,2)
(1),(1),(1),(1) (1,1,2,1)
(1,2,1,1)
(2,1,1,1)
(1,1,1,1,1)
(1),(1),(1),(1),(1)
(End)

Examples

			Divisors of 6 = 1,2,3,6 and 6-1 = 5, 6-2 = 4, 6-3 = 3, 6-6 = 0. a(6) = 2^5 + 2^4 + 2^3 + 2^0 = 32 + 16 + 8 + 1 = 57.
G.f. = x + 3*x^2 + 5*x^3 + 13*x^4 + 17*x^5 + 57*x^6 + 65*x^7 + ...
a(14) = 1 + 2^7 + 2^12 + 2^13 = 12417. - _Gus Wiseman_, Jun 20 2018
		

Crossrefs

Cf. A080267.
Cf. A051731.
The version looking at lengths instead of sums is A101509.
The strictly increasing (or strictly decreasing) version is A304961.
Starting with a partition gives A317715.
Starting with a strict partition gives A318683.
Requiring distinct instead of equal sums gives A336127.
Starting with a strict composition gives A336130.
Partitions of partitions are A001970.
Splittings of compositions are A133494.
Splittings of partitions are A323583.

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ 2^(n - d), {d, Divisors[n]}]] (* Michael Somos, Mar 28 2013 *)
  • PARI
    a(n)=if(n<1,0,2^n*polcoeff(sum(k=1,n,2/(2-x^k),x*O(x^n)),n))
    
  • PARI
    a(n) = sumdiv(n,d, 2^(n-d) ); /* Joerg Arndt, Mar 28 2013 */

Formula

G.f.: 2^n times coefficient of x^n in Sum_{k>=1} x^k/(2-x^k). - Benoit Cloitre, Apr 21 2003; corrected by Joerg Arndt, Mar 28 2013
G.f.: Sum_{k>0} 2^(k-1)*x^k/(1-2^(k-1)*x^k). - Vladeta Jovovic, Jun 24 2003
G.f.: Sum_{n>=1} a*z^n/(1-a*z^n) (generalized Lambert series) where z=2*x and a=1/2. - Joerg Arndt, Jan 30 2011
Triangle A051731 mod 2 converted to decimal. - Philippe Deléham, Oct 04 2003
G.f.: Sum_{k>0} 1 / (2 / (2*x)^k - 1). - Michael Somos, Mar 28 2013

Extensions

a(14) corrected from 9407 to 12417 by Gus Wiseman, Jun 20 2018

A336135 Number of ways to split an integer partition of n into contiguous subsequences with strictly decreasing sums.

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 29, 50, 79, 135, 213, 337, 522, 796, 1191, 1791, 2603, 3799, 5506, 7873, 11154, 15768, 21986, 30565, 42218, 57917, 78968, 107399, 144932, 194889, 261061, 347773, 461249, 610059, 802778, 1053173, 1377325, 1793985, 2329009, 3015922, 3891142
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(5) = 16 splittings:
  (1)  (2)    (3)        (4)          (5)
       (1,1)  (2,1)      (2,2)        (3,2)
              (1,1,1)    (3,1)        (4,1)
              (2),(1)    (2,1,1)      (2,2,1)
              (1,1),(1)  (3),(1)      (3,1,1)
                         (1,1,1,1)    (3),(2)
                         (2,1),(1)    (4),(1)
                         (1,1,1),(1)  (2,1,1,1)
                                      (2,2),(1)
                                      (3),(1,1)
                                      (3,1),(1)
                                      (1,1,1,1,1)
                                      (2,1),(1,1)
                                      (2,1,1),(1)
                                      (1,1,1),(1,1)
                                      (1,1,1,1),(1)
		

Crossrefs

The version with equal sums is A317715.
The version with strictly increasing sums is A336134.
The version with weakly increasing sums is A336136.
The version with weakly decreasing sums is A316245.
The version with different sums is A336131.
Starting with a composition gives A304961.
Starting with a strict partition gives A318684.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],Greater@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]
  • PARI
    a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f, self()(r,min(m,t-1),t-1,0,0)) + self()(r,m-1,s,t,0) + if(t+m<=s, self()(r-m,min(m,r-m),s,t+m,1)))); recurse(n,n,n,0)} \\ Andrew Howroyd, Jan 18 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 18 2024

A336342 Number of ways to choose a partition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 2, 7, 11, 29, 81, 155, 312, 708, 1950, 3384, 7729, 14929, 32407, 81708, 151429, 305899, 623713, 1234736, 2463743, 6208978, 10732222, 22487671, 43000345, 86573952, 160595426, 324990308, 744946690, 1336552491, 2629260284, 5050032692, 9681365777
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
Is there a simple generating function?

Examples

			The a(1) = 1 through a(4) = 11 ways:
  (1)  (2)    (3)        (4)
       (1,1)  (2,1)      (2,2)
              (1,1,1)    (3,1)
              (1),(2)    (1),(3)
              (2),(1)    (2,1,1)
              (1),(1,1)  (3),(1)
              (1,1),(1)  (1,1,1,1)
                         (1),(2,1)
                         (2,1),(1)
                         (1),(1,1,1)
                         (1,1,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of partitions are A323583.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Mathematica
    Table[Length[Join@@Table[Tuples[IntegerPartitions/@ctn],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,0,10}]
  • PARI
    seq(n)={[subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*numbpart(k) + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} k! * [y^k](Product_{j>=1} 1 + y*x^j*A000041(j)). - Andrew Howroyd, Apr 16 2021

A336132 Number of ways to split a strict integer partition of n into contiguous subsequences all having different sums.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 8, 11, 14, 21, 30, 37, 51, 66, 86, 120, 146, 186, 243, 303, 378, 495, 601, 752, 927, 1150, 1395, 1741, 2114, 2571, 3134, 3788, 4541, 5527, 6583, 7917, 9511, 11319, 13448, 16040, 18996, 22455, 26589, 31317, 36844, 43518, 50917, 59655, 69933
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(7) = 14 splits:
  (1)  (2)  (3)      (4)      (5)      (6)          (7)
            (2,1)    (3,1)    (3,2)    (4,2)        (4,3)
            (2),(1)  (3),(1)  (4,1)    (5,1)        (5,2)
                              (3),(2)  (3,2,1)      (6,1)
                              (4),(1)  (4),(2)      (4,2,1)
                                       (5),(1)      (4),(3)
                                       (3,2),(1)    (5),(2)
                                       (3),(2),(1)  (6),(1)
                                                    (4),(2,1)
                                                    (4,2),(1)
                                                    (4),(2),(1)
		

Crossrefs

The version with equal instead of different sums is A318683.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,30}]

A336131 Number of ways to split an integer partition of n into contiguous subsequences all having different sums.

Original entry on oeis.org

1, 1, 2, 6, 9, 20, 44, 74, 123, 231, 441, 681, 1188, 1889, 3110, 5448, 8310, 13046
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(4) = 9 splits:
  (1)  (2)    (3)        (4)
       (1,1)  (2,1)      (2,2)
              (1,1,1)    (3,1)
              (2),(1)    (2,1,1)
              (1),(1,1)  (3),(1)
              (1,1),(1)  (1,1,1,1)
                         (2,1),(1)
                         (1),(1,1,1)
                         (1,1,1),(1)
		

Crossrefs

The version with equal instead of different sums is A317715.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a strict partition gives A336132.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]

A336134 Number of ways to split an integer partition of n into contiguous subsequences with strictly increasing sums.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 17, 27, 37, 62, 82, 125, 168, 246, 320, 462, 585, 839, 1078, 1466, 1830, 2528, 3136, 4188, 5210, 6907, 8498, 11177, 13570, 17668, 21614, 27580, 33339, 42817, 51469, 65083, 78457, 98409, 117602, 147106, 174663, 217400, 259318, 319076, 377707
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(6) = 17 splits:
  (1)  (2)    (3)        (4)          (5)            (6)
       (1,1)  (2,1)      (2,2)        (3,2)          (3,3)
              (1,1,1)    (3,1)        (4,1)          (4,2)
              (1),(1,1)  (2,1,1)      (2,2,1)        (5,1)
                         (1,1,1,1)    (3,1,1)        (2,2,2)
                         (1),(1,1,1)  (2,1,1,1)      (3,2,1)
                                      (2),(2,1)      (4,1,1)
                                      (1,1,1,1,1)    (2,2,1,1)
                                      (2),(1,1,1)    (2),(2,2)
                                      (1),(1,1,1,1)  (3,1,1,1)
                                      (1,1),(1,1,1)  (2,1,1,1,1)
                                                     (2),(2,1,1)
                                                     (1,1,1,1,1,1)
                                                     (2),(1,1,1,1)
                                                     (1),(1,1,1,1,1)
                                                     (1,1),(1,1,1,1)
                                                     (1),(1,1),(1,1,1)
		

Crossrefs

The version with equal sums is A317715.
The version with strictly decreasing sums is A336135.
The version with weakly decreasing sums is A316245.
The version with different sums is A336131.
Starting with a composition gives A304961.
Starting with a strict partition gives A336133.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],Less@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]
  • PARI
    a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f && r > t && t >= s, self()(r,m,t+1,0,0)) + self()(r,m-1,s,t,0) + self()(r-m,min(m,r-m), s,t+m,1))); recurse(n,n,0,0,0)} \\ Andrew Howroyd, Jan 18 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 18 2024

A336139 Number of ways to choose a strict composition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 1, 5, 9, 17, 45, 81, 181, 397, 965, 1729, 3673, 7313, 15401, 34065, 68617, 135069, 266701, 556969, 1061921, 2434385, 4436157, 9120869, 17811665, 35651301, 68949549, 136796317, 283612973, 537616261, 1039994921, 2081261717, 3980842425, 7723253181, 15027216049
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 17 splittings:
  (1)  (2)  (3)      (4)        (5)
            (1,2)    (1,3)      (1,4)
            (2,1)    (3,1)      (2,3)
            (1),(2)  (1),(3)    (3,2)
            (2),(1)  (3),(1)    (4,1)
                     (1),(1,2)  (1),(4)
                     (1),(2,1)  (2),(3)
                     (1,2),(1)  (3),(2)
                     (2,1),(1)  (4),(1)
                                (1),(1,3)
                                (1,2),(2)
                                (1),(3,1)
                                (1,3),(1)
                                (2),(1,2)
                                (2,1),(2)
                                (2),(2,1)
                                (3,1),(1)
		

Crossrefs

The version for partitions is A063834.
Row sums of A072574.
The version for non-strict compositions is A133494.
The version for strict partitions is A279785.
Multiset partitions of partitions are A001970.
Strict compositions are A032020.
Taking a composition of each part of a partition: A075900.
Taking a composition of each part of a strict partition: A304961.
Taking a strict composition of each part of a composition: A307068.
Splittings of partitions are A323583.
Compositions of parts of strict compositions are A336127.
Set partitions of strict compositions are A336140.

Programs

  • Mathematica
    strs[n_]:=Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Join@@Table[Tuples[strs/@ctn],{ctn,strs[n]}]],{n,0,15}]

A307068 Expansion of 1/(1 - Sum_{k>=1} k!*x^(k*(k+1)/2) / Product_{j=1..k} (1 - x^j)).

Original entry on oeis.org

1, 1, 2, 6, 14, 34, 88, 216, 532, 1322, 3290, 8142, 20192, 50080, 124144, 307878, 763474, 1893038, 4694060, 11639580, 28861736, 71567206, 177460750, 440037738, 1091134276, 2705618900, 6708953156, 16635775698, 41250705518, 102286806130, 253634237896, 628921097352, 1559496588628
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2019

Keywords

Comments

Invert transform of A032020.
Number of ways to choose a strict composition of each part of a composition of n. - Gus Wiseman, Jul 18 2020
The Invert transform T(a) of a sequence a is given by T(a)n = Sum_c Product_i a(c_i), where the sum is over all compositions c of n. - _Gus Wiseman, Aug 01 2020

Examples

			From _Gus Wiseman_, Jul 18 2020: (Start)
The a(1) = 1 through a(4) = 14 ways to choose a strict composition of each part of a composition:
    (1)  (2)      (3)          (4)
         (1),(1)  (1,2)        (1,3)
                  (2,1)        (3,1)
                  (1),(2)      (1),(3)
                  (2),(1)      (2),(2)
                  (1),(1),(1)  (3),(1)
                               (1),(1,2)
                               (1),(2,1)
                               (1,2),(1)
                               (2,1),(1)
                               (1),(1),(2)
                               (1),(2),(1)
                               (2),(1),(1)
                               (1),(1),(1),(1)
(End)
		

Crossrefs

The version for partitions is A270995.
Starting with a strict composition gives A336139.
Strict compositions are counted by A032020.
Partitions of each part of a partition are A063834.
Compositions of each part of a partition are A075900.
Compositions of each part of a composition are A133494.
Strict partitions of each part of a strict partition are A279785.
Compositions of each part of a strict partition are A304961.
Strict partitions of each part of a composition are A304969.
Compositions of each part of a strict composition are A336127.
Set partitions of strict compositions are A336140.
Strict compositions of each part of a partition are A336141.

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(1 - (&+[Factorial(k)*x^Binomial(k+1,2)/(&*[ 1-x^j: j in [1..k]]): k in [1..m+2]]) ) )); // G. C. Greubel, Jan 25 2024
    
  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 1, 0), T(n-k, k) +k*T(n-k, k-1)))
        end:
    g:= proc(n) option remember; add(T(n, k), k=0..floor((sqrt(8*n+1)-1)/2)) end:
    a:= proc(n) option remember; `if`(n<1, 1,
          add(a(n-i)*g(i), i=1..n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Dec 16 2022
  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - Sum[k!*x^(k*(k+1)/2)/Product[ (1-x^j), {j,k}], {k,nmax}]), {x, 0, nmax}], x]
  • SageMath
    m=80;
    def p(x, j): return product(1-x^k for k in range(1,j+1))
    def f(x): return 1/(1 - sum(factorial(j)*x^binomial(j+1,2)/p(x,j) for j in range(1, m+3)) )
    def A307068_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307068_list(m) # G. C. Greubel, Jan 25 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A032020(k)*a(n-k).
Previous Showing 11-20 of 46 results. Next